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Abstract  

Current color image encoding and processing generally 
considers the color value of a pixel based on a quantized set 
of coordinates in an n-dimensional color space. While this 
approach is useful and practical for numerous reasons, it is 
informative to consider how these representations and 
processing techniques might make use of the highest level 
cognitive description of color, the color name or color 
category. This paper proposes how a lexical or name-based 
representation of an image might be generated. Color 
naming algorithms based on classical logic, prototype 
theory and fuzzy logic are presented and compared. This 
paper also describes specific applications of this lexical 
quantization such as morpholexical analysis, lexical 
harmony and non-photorealistic rendering.  

 
Keywords: Color naming, perceptual categorization, 
machine learning, lexical quantization, color picker, web-
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Introduction 

Lexical image processing is a combination of 
computational linguistics, machine learning and digital 
image processing where the fundamental task is the design 
and implementation of general-purpose, robust and scalable 
machine color naming algorithms for the color naming of 
individual image pixels. This paper explores various 
methods for machine color naming and explores possible 
applications of the capability to supplement existing color 
space encodings with high-level cognitive categories.1 The 
foundation of this work is a large-scale, task specific 
database derived using the World Wide Web.2 There are 
many applications of this technology and this paper will 
discuss several of them. A summary flowchart of these 
techniques and processes are shown in Figure 1. There are 
many prior publications and much related work7-35 in the 
area of color naming but these efforts tends to be focused 
on a specific aspect of naming or application. The intention 
of this paper is a more general view of lexical image 
processing. 

A large-scale task-specific database, in this case 
unconstrained color naming database from thousands of 
volunteers is shown to the top left. Branching to the top 
right of figure 1 is then the derivation of color vocabularies 
which then be used for language-based color pickers or the 
computation of a color value, say in a specific RGB space, 
given a color name. A specific example of this type of 

color picker is the online color thesaurus.3 Branching to the 
lower right is then the machine color naming and 
applications or the assignment of a color names to an input 
color values, again in a specific RGB space. Given a 
sizeable color naming database it is then possible to test a 
range of machine learning algorithms, such as prototype 
theory or fuzzy logic.   
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Fig. 1. Overview of techniques relating to lexical imaging. 

As a key enabler for this technology, the collection and 
validation of the color naming database will be described in 
summary. Starting in 2002 and continuing on until the 
present over 3,000 participants have provided over 21,000 
color names to a color naming database. Participants were 
asked to provide unconstrained color names for seven 
colored squares randomly selected from a uniform six by 
six by six sampling of the RGB cube. Each participant was 
provided with a random sampling of seven uniform patches 
using a JavaScript program. Optional comments were 
captured along with the originating IP address. Multiple 
submissions per IP address were less than 5% and 
participants were registered from around the world, 
although the majority was from North America and Europe. 
The experiment was conducted in phases beginning with a 
pool of participants from within the authors’ organization. 
This pool of participants provided a baseline with the 
assumption that the rates of disruptive observers would be 
lower than for the external web. This initial phase yielded a 
scoring algorithm against which new submissions could be 
graded and rejected in the case of a questionable 
submission, like providing the hex values for the patches or 
the first names of women. Roughly five percent of 
submissions were not used due to likelihood of being a 
disruptive observation. The scoring algorithm weighted 
overall mismatch of a given set of color names to the entire 
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corpus more than the use of novel or unfamiliar names. The 
impact of disruptive participants was further reduced by the 
distributed design of providing only a few color patches for 
any given page view. Finally, the correlations with 
previously published laboratory studies for the basic eleven 
color names were excellent. For instance the correlation 
coefficients for the predicted CIELAB hue angle for these 
hues was 0.99 and 0.98 relative to the results published by 
Boynton and Olson34, and Sturges and Whitfield.35 Similar 
correlations were also shown for object hues as measured 
directly or from the web-based data. 2  

Color Naming Algorithms 

Given a color naming database, the next major 
consideration is an algorithm for color naming. A range of 
algorithms has been published7-15 but these models are 
generally based on a fixed hierarchy of limited colors, a 
limited number of participants or explicit assumptions 
about the process of color naming. In addition, imaging 
applications have not been considered for many of these 
models. Broad categories of algorithms to be considered 
are classical logic, neural networks, Bayesian learning, 
prototype and fuzzy models. It is beyond the scope of this 
paper to consider all of these in detail but it is informative 
to consider classical logic, prototype and fuzzy naming 
models in some additional detail. Broadly speaking 
classical logic models emphasize the locations of the 
category boundaries, prototype models emphasize the 
location of the foci or centroids of the categories and fuzzy 
model emphasize the concept of graded memberships. 

The published model10 of Lin et al. provides a useful 
baseline for comparing general features of the prototype 
and fuzzy models. Shown in Figure 2 are four equal 
lightness slices through a gamut limited CIELAB color 
space going from darker to lighter from left to right. The 
slices vary smoothly but after processing with the Lin et al. 
model the colors are assigned to one of 11 color names. 
The corresponding color name is shown with a test label. 
For each slice the colors transition from green to red 
horizontally and blue to yellow vertically. The center of 
each slice is an achromatic color such as black, gray or 
white. The Lin et al. model is based on fixed thresholds for 
lightness, chroma and hue that were determined through a 
combination of experimental data and heuristic modeling. 
In this respect it is a classical logic model in which the data 
is confined by crisp thresholds. The model also considers 
only the boundaries and not the location of the focal colors.  

 

 

Fig. 2. Classical logic eleven color categorization. 

Furthermore, it does not provide any direct means to 
systematically modify the location of the boundaries for an 
individual color or provide a clear means to add additional 
colors. Note that the boundaries shown in the figure show 
some distortions that are due to the data sampling scheme 
and not to the model. Specifically, the original data was a 
uniformly sampled CIELAB grid that was then gamut 
clipped to sRGB. However the basic qualitative features are 
evident: a circular achromatic region, straight radial hue 
boundaries, the nesting of brown and the relative sequence 
of the hues around the origin. 

Prototype theory is a commonly cited model18,19 for the 
cognitive process of categorization and color naming. This 
theory hypothesizes that people learn a single, best focal 
color for a given color name. The relative similarities to a 
set of learned prototypes are then used to categorize a given 
example color. This corresponds to a nearest neighbor 
calculation and effectively results in a Voronoi 
partitioning20 of a color space. For example, given the 
objective to have a 27 name color vocabulary the color 
naming database can then be searched for all instances of 
the specified color names. The 27 names can be selected 
based on overall frequency analysis, custom considerations 
or a combination of the two approaches. The prototype for 
each name can be computed using basic statistics, in this 
case the arithmetic mean in RGB space. An example 
partitioning using this approach is shown in Figure 3. 

 

Fig. 3. Prototype naming model using 27 color categories. 

The format of the graphs in Figure 3 is the same as that 
shown in Figure 2. In this case the much larger database of 
colors enables a simple extension to an arbitrary number of 
colors. In this case, 27 names were chosen to be 
comparable with a uniform 3 by 3 by 3 quantization 
presented later in this paper. The nearest neighbors were 
computed using the Euclidean distance in the CIELAB 
color space. Other color spaces and distance metrics are 
possible, but the results in Figure 4 demonstrate the general 
properties of prototype models. Specifically, these models 
will tend to have distinct ‘corners’ or large straight edges 
between categories. Furthermore careful determination of 
the prototypes does not necessarily provide a simple 
method to systematically expand and contract specific 
color categories. For example, an expansion of the range of 
the gray region would require a distance to a line, curve, 
region or volume and while algorithms exist for this 
calculation, it is not trivial to parameterize this process. 
Finally, the calculation of the inter-point distances can be 
computed in the O(n log(n)) worst-case optimal time in 
O(n) space. 

Fuzzy logic, which has been introduced by Zadeh in 
1965, and has since been used in many different 
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applications, is related to the fuzziness in the human 
thought and reasoning process, whose logic goes beyond 
traditional two-valued or even multi-valued logic.21,22 
Fuzzy sets, the basic elements, are extensions of crisp sets, 
which allow only full or no membership. Fuzzy set theory 
allows the concept of partial membership defined via a 
membership function μA(x) that can take on values in the 
interval [0,1]. Per definition, fuzzy sets represent linguistic 
labels or terms such as slow, fast, low, medium and high. 
As a consequence, it is very easy to see that color names 
can be seen as a fuzzy set. A point in n-dimensional color 
space can be a member of several color names (like orange, 
red or brown) at the same time in different strengths. 
Figure 4 shows the resulting partitioning CIELAB color 
space slices using 27-name fuzzy model.  

 

Fig. 4. Fuzzy naming model using twenty-seven categories. 

The format used in Fig. 4 is the same as that used for 
Figures 2 and 3 in that each of the four boxes corresponds 
to a different approximately constant lightness plane. The 
results shown for the fuzzy naming model can be compared 
to those for the prototype naming model. The general 
trends are similar and it should be noted that there were 
some small differences in the exact color terms used for 
each of these figures. Comparing Figure 4 with Figures 2 
and 3, the most significant difference is the curvature of 
name boundaries that results from using the membership 
functions derived from the aggregate data. It is an open 
question whether they represent the true nature of cognitive 
categories but these plots highlight differences between 
various implementations. From an implementation 
standpoint it is worth noting that the membership model 
can be efficiently computed with n times 3 multiplications 
where n is the number of names. In addition the application 
of an exponent to the corresponding color membership can 
be used to easily expand or contract an individual 
membership or range of a color name. However a fuzzy 
naming model requires additional memory for the storage 
of a complete membership function for each color name. 
For instance an 8-bit function would require 256 time 3 
data points to be stored in memory. 

Lexical Quantization 

Determining the optimal color name for a given pixel 
can be considered a form of data reduction. For example, 
the over 16 million individual colors possible within a 24 
bit RGB image could be assigned to a much smaller set of 
color names. This is comparable to various quantization 
and color palette creation algorithms. However, uniform 
quantization as one extreme generally does not yield very 
satisfactory results and palettes generated specifically for 

one image or optimized for that image but used on another 
image generally don’t yield very good results. Lexical 
quantization however reduces the higher bit depth color 
information to highly salient cognitive nodes and as a result 
yields a considerably improved result relative to other 
quantization schemes and yet it is more broadly applicable 
than an image specific color palette. An example 
comparing lexical quantization to uniform device 
quantization and the application of the Lin et al color-
naming model are shown in Figure 5. 

 

Fig. 5. Original 24 bit RGB image in upper left reduced to 27 
colors using uniform device quantization in the upper right. The 

lower left is the original reduced to 11 color names using the 
algorithm of Lin et al and the lower right is the image reduced to 
27 color names using lexical quantization described in this paper. 

The lexical quantization result shown in Figure 5 is 
based on using 27 color names and the fuzzy color naming 
model. These names were selected by both considering the 
most frequently used color terms of the color naming 
database and by adding a skin tone node, given that this 
color name was not in the top 27 names. Centroids for 
these terms were computed by averaging corresponding 
data in the full experimental data set. The fuzzy 
memberships for flesh and white were expanded using a 
power of 0.3 while that of gray was contracted using a 
power of 3. It should be noted that the Lin et al. model2 was 
not optimized for use with images but it is included as an 
example of a classical logic based model. The uniform 
quantization is also not expected to work very well and in 
fact has colors, like the faces, that are both too brownish 
and too greenish. However the lexical quantization with the 
‘greedy’ flesh category has been applied to the sidewalk as 
a result of the expanded skin tone memberships. 

Lexical Histograms 

The lexically quantized image also provides an intuitive 
way to visualize the summary statistics for an image. One 
widely used summary statistic for an image is a channel by 
channel histogram of the colors. While RGB histograms are 
a powerful and straightforward metric to analyze and edit 
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an image they are not always the most intuitive abstraction 
of the image color properties. For instance if we consider 
the two images shown in the top of Figure 10 the RGB 
histograms are in the middle and the lexical histograms are 
on the bottom. Visualizing the relative pixel count as 
“olive” or “brown” on the lower right provides a highly 
abstracted view of the image color statistics. Using lexical 
quantization schemes with large and smaller color 
vocabularies provides a scalable way to adjust this 
histogram representation. 

  

  

  

Fig. 6. Two sample images on top, two RGB histograms in the 
middle and two lexical histograms on the bottom. 

Lexical Interfaces 

As has been demonstrated previously,7 a lexical 
quantization scheme also provides an intuitive user 
interface for selecting and editing color. It should be 
emphasized that even the most basic naming scheme 
provides considerable utility for experts and naïve users 
alike. Consider for example the image shown in Figure 7.  

 

Fig. 7. Selection of pixels using color thresholds in device space. 

On the left is a sample image and on the right is a selection 
of colored pixels. The intention is to select the brown belt 
and wallet but using regular volumes in device space, in 
this case RGB, results in a case where there is no threshold 
for the color channels that is large enough to select all the 

pixels in the belt without also selecting other pixels. In 
contrast, the example shown in Figure 8 the same image 
has the “brown”27 pixels selected using lexical 
quantization. The default result is a much better selection 
of primarily the belt and wallet pixels.  

 

Fig. 8. Selection of pixels using lexical quantization and the 
identification of “brown” pixels. 

Morpholexical Analysis 

Morphological imaging or analysis of shape in 
imaging is largely focused on binary images. Color with 
it’s higher dimensionality provides a range of challenges 
and considerations for morophological operators. However 
an image that has been lexically quantized can be subject to 
the standard opening and closing operators in a more 
straightforward manner. For example an image with a 
white background and a reddish figure that has been 
lexically quantized to red can have the red pixels smoothed 
in the lexical domain. In the cases where there are multiple 
color names under consideration in a specific region a 
series of alternating sequential filters can be applied. A 
graphical example of this is shown in Figure 9. 

 
Fig. 9. Graphical example of the proposed filtering stage, with two 

structuring elements. Pure red at the output signifies 
“disagreement” between the parallel filtering branches. 

More specifically, an extraction of the underlying color 
patches at multiple scales is carried out with an alternating 
sequential filters pyramid, where the structuring elements 
become increasingly larger. These filter perform the 
opening and closing in a certain pyramid level with the 
same structuring element. Next, the size of the structuring 
element is reduced in the second filtering stage to preserve 
detail in high color activity regions. The areas of non-
agreement have high color activity at this pyramid level 
and the detail is incorporated from a previous filtering 
stage. The areas of disagreement are filtered using a 
template base mode operator that takes into account only 
the pixels that lie within the areas of disagreement, with a 
small structuring element. Finally, the areas of agreement 
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are then combined with the output of the template base 
mode filter. This combination of lexically quantized image 
and morphological operators has a number of variants but 
the combination of the two results in morpholexical 
analysis and provides a powerful means to smooth and 
segment and image. 5 

Lexical Harmony 

Color harmony sets guidelines on how to create 
effective color combinations. Many attempts have been 
made, through many historical periods, to create recipes for 
color harmony. It is, however, not possible to make a list of 
rules to describe the harmonious or disharmonious visual 
image. Complementary contrast, whatever the subject, is 
not a requirement for a harmonious color image. “Ton-sur-
ton” or analogous color scheme (where all colors are 
related to one color hue in slightly different shades or tints) 
color use doesn’t guarantee harmony either. Only the 
human eye can judge the final artistic result. 

The color schemes used the most in harmonization are: 
Analogous scheme: uses any three consecutive hues or any 
of their tints and shades on the color wheel, 
Complementary scheme: uses direct opposites on the color 
wheel, Clashing scheme: combines a color with the hue to 
the right or left of its complement on the color wheel, 
Monochromatic scheme: uses one hue in combination with 
any or all of its tints and shades and Split complementary 
scheme: consists of a hue and the two hues on either side of 
its complement  

Figure 10 shows an input image with morpholexical 
analysis applied and a further abstraction to regions. These 
regions are roughly coded by side and proximity to the 
edge of the image. Given this information shown in Figure 
7.c it is then possible to create image color mattes that 
follow one of the above color schemes.6 

 

             
(a)    (b)    (c) 

Fig. 10. a) “girl” image with superimposed color patch 
abstraction, b) “girl” color patch abstraction, c) larger patches 

touching borders abstraction. 

Non-Photorealistic Rendering 

Within the field of computer graphics there is the 
research domain of non-photographic rendering. This type 
of rendering ranges from emulation of illustration 
techniques to simulation of schools of painting. These 
processes often make use of some form of color reduction 
or segmentation.36  

 

Fig. 11. Original 24 bit RGB, above, and lexically rendered 
image, on bottom 

Lexical quantization could be a useful component in 
this process as the input color data can be reduced to a 
small palette of perceptually salient color categories with a 
modest amount of chroma expansion and hue preservation. 
An example of this type of rendering is shown in Figure 11 
in which an original 24 bit RGB image is lexically 
quantized to yield an abstract version of the image. The 
lexically rendered image has an almost ‘paint-by-numbers’ 
appearance relative to the original. Another intriguing 
application of the lexically quantized image would be to 
blur the resulting image and use with mask-based spatial 
color reproduction algorithms to get an image with 
exaggerated hue-constant ‘soft-focus’ image renderings.. 

Conclusions 

There has been a range of work touching on machine 
color naming and in some cases the applications to 
imaging. However this work has tended to be focused on 
specific fixed vocabularies and processing techniques and 
has generally been more focused on specific applications 
rather than the broadest considerations of lexical rendering. 
This paper has provided sample graphical results for 
machine color naming with classical logic, prototype 
theory and fuzzy logic. Next this paper has considered the 
applications of these techniques to quantization, 
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histograms, interfaces, morphology analysis, color 
harmony and non-photorealistic rendering. 

References 

1. N. Moroney, “Unconstrained web-based color naming 
experiment”, Proc. SPIE 5008, pp. 36-46 (2003). 

2. N. Moroney, “Uncalibrated Color”, Proc SPIE 6058, (2006). 
3. N. Moroney, The Color Thesaurus, June 2008 edition, 

http://magcloud.com/browse/Issue/2344 (2008). 
4. G. Beretta and N. Moroney, “Cognitive Aspects of Color” 

Hewlett-Packard Laboratories Technical Report 2008-109, 
http://library.hp.com/techpubs/2008/HPL-2008-109.html 
(2008). 

5. Pere Obrador, “Automatic color scheme picker for document 
templates based on image analysis and dual problem”, Proc. 
SPIE, 6076, (2006). 

6. Pere Obrador, “Document layout and color driven image 
retrieval”, Proc. of ACM SIGIR, pp. 889-890, (2007). 

7. G. Woolfe, “Making color adjustments accessible to non-
experts through the use of language”, Proc. 15th IS&T/SID 
Color Imaging Conference, 3-7, (2007). 

8. H. Motomura, “Categorical color mapping using color-
categorical weighting method-Part I: Theory: Color imaging 
science”, Journal of Imaging Science and Technology, 45(2), 
117-129 (2001). 

9. H. Motomura, “Analysis of gamut mapping Algorithms from 
the Viewpoint of Color Name Matching”, J. SID, 13(3), pp. 
247-254 (2002). 

10. H. Lin, M.R.Luo, L.W.MacDonald and A.W.S. Tarrant, “A 
Cross Cultural Colour-Naming Study, Part III – A Colour-
Naming Model”, Col. Res. Appl. 26(4), pp. 270-277 (2001). 

11. K. Okajima, A. R. Robertson and G.H. Fielder, “A 
quantitative network model for color categorization”, Color 
Res. Appl. 27(4), pp. 225-232 (2002). 

12. M. Dowman, “A Bayesian Model of Colour Term Acquisition 
and Typology”. Presentated at the Australian Linguistics 
Society Conference, July 13-14, Macquarie University, 
Sydney (2002). 

13. S. Tseng, J.-P. Hsu and T.-H. Wei, “Quantifying Qualitative 
Relations about Colors Through Fuzzy and Statistical 
Operations”, Color Res. and App., 15(2), pp. 93-98 (1990). 

14. A. Mojsilovic, “A Computational Model for Color Naming 
and Describing Composition of Images”, IEEE Trans. Img,. 
Proc., 14(5), pp. 690-699 (2005). 

15. M. Seaborn and L. Hepplewhite, “Fuzzy Colour Category 
Map for Content Based Image Retrieval”, Proc. 10th British 
Machine Vision Conf. (1999). 

16. H. Lin, M.R. Luo, L.W. MacDonald and A.W.S. Tarrant, “A 
Cross-Cultural Colour-Naming Study. Part I: Using an 
Unconstrained Method”, Col. Res. Appl. 26(1), pp. 40-60 
(2001). 

17. H. Lin, M.R. Luo, L.W. MacDonald and A.W.S. Tarrant, “A 
Cross-Cultural Colour-Naming Study. Part II: Using n 
Constrained Method”, Col. Res. Appl. 26(3), pp. 193-208 
(2001). 

18. J.R. Taylor, Linguistic Categorization: Prototypes in 
Linguistic Theory, Oxford University Press, Oxford, England 
(1989). 

19. Gardenfors and M.A. Williams, “Reasoning about categories 
in conceptual spaces”, Proc. 14th International Joint 
Conference of Artificial Intelligence, pp. 385-392 (2001). 

20. J. O’Rourke, Computational Geometry, Chapter 5 – Voronoi 
Diagrams, Cambridge University Press, (1998). 

21. A.D. Kulkarni, Computer Vision and Fuzzy –Neural Systems, 
Prentice Hall, USA, (2001). 

22. V. Cherkassky and F. Mulier, Learning from Data, Chapter 
10, John Wiley & Sons, USA, (1998). 

23. P. Kay and T. Reiger, “Resolving the question of color 
naming universals”, Proc. Nat. Acad. Sci., 100 (15), pp. 
9085-9089 (2003). 

24. D.L. Post, “Color-Name Boundaries for Equally Bright 
Stimuli on a CRT: Phase I”, SID Digest 86, pp. 70-73 (1986). 

25. D.L. Post, “Color-Name Boundaries for Equally Bright 
Stimuli on a CRT: Phase II”, SID Digest 88, pp. 65-68 
(1988). 

26. D.L. Post, “Color-Name Boundaries for Equally Bright 
Stimuli on a CRT: Phase III”, SID Digest 89, pp. 284-287 
(1989) 

27. C. J. Bartleson, “Brown”, Color Res. and App., 1(4), pp. 181-
191 (1976). 

28. R. Kaufmann and M.C. O’Neil, “Colour Names and Focal 
Colours on Electronic Displays”, Ergonomics, 36(8), pp. 881-
890 (1993). 

29. H. Shinoda, K. Uchikawa and M. Ikeda, “Categorized Color 
Space on CRT in the Aperature and the Surface Color Mode”, 
Col. Res. Appl. 18(5), pp. 326-333 (1993). 

30. R. Benavente, F. Tous, R. Baldrich and M. Vanrell, 
“Statistical Modeling of a Colour Naming Space”, Proc. First 
CGIV, pp. 406-411 (2002). 

31. S. Tominaga, “A Color-Naming Method for Computer Color 
Vision”, Proc. IEEE Int. Conf. Cybernetics and Society, pp. 
573-577 (1985). 

32. T. Berk, L. Brownstone and A. Kaufman, “A Human Factors 
Study of Color Notation Systems for Computer Color 
Graphics”, Comm. ACM, 25(8), pp.547-550 (1982). 

33. S.N. Yendrikhovskij, “Computing Color Categories”, Proc. 
SPIE 3959, pp. 356-364 (2000). 

34. R.M. Boyton and C.X. Olson, “Locating Basic Colors in the 
OSA Space”, Col. Res. Appl. 12(4), pp. 94-105 (1987). 

35. J. Sturges and T.W.A. Whitfield, “Locating the Basic Colours 
in the Munsell Space”, Col. Res. Appl., 20(6), pp. 364-376 
(1995). 

36. D. DeCarlo and A. Santella, “Stylization and Abstraction of 
Photographs”, SIGGRAPH 2002, pp. 769-776 (2002). 

 

16th Color Imaging Conference Final Program and Proceedings 273




