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Abstract 
Forward device models for multi-ink printing systems (i.e., 

ones that contain more than three colorants) relate ink amounts to 
predictions of either colorimetry or spectral reflectance. These 
models often have a large portion of their range (CIELAB values) 
that lack unique domain values (device ink amounts). This makes 
unique inversion of the forward model ill posed in these regions of 
color space. An approach is presented where direct computational 
techniques are applied to a tessellated version of a device’s 
forward model to produce an inverse. This is accomplished using 
an isosurfacing technique that sequentially intersects m 
noncoincident planes in the m-dimensional range color space 
through the image of the model’s device-code value n-dimensional 
domain tessellation. This computational approach results in (n-m)-
dimensional piecewise-linear ink manifolds that define the 
mapping of the n-dimensional domain space (ink amounts) to a 
location in the m-dimensional range space (CIELAB). This process 
is generalizable to devices with any number of input inks, n ≥ m, 
provided the range space color is within the color gamut of the 
device. 
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Background 
Colorimetric or spectral forward models of an imaging device 

relate the device code values or colorant amounts to either direct 
colorimetric quantities, such as tristimulus values, or to spectral 
quantities, as is the case of Yule-Nielson modified spectral 
Neugebauer models [1]. For color management purposes, the 
inverse of these models is required (i.e., the relationship between 
device-independent color values, such as CIELAB values, and 
device code values). The process of inverting these device models 
is the key to modern color management. 

For well-behaved three-color imaging devices, such as RGB 
displays and CMY printers, the relationship between device code 
values and colorimetric quantities, such as CIE tristimulus values 
or CIELAB values, is unique. This relationship is shown 
diagrammatically for an RGB display in Fig. 1. In this figure, the 
device code values span a cube of red, green, and blue domain 
values and the color gamut spans a region of the CIELAB range 
space. The example shown in Fig. 1 uses a tetrahedral complex 
(i.e., a connected group of tetrahedral simplexes) to represent the 
forward device model. Forward models of this type have the 
relationship that each vertex in the domain space has a matching 
point in the range space and the connectivity of the tetrahedral 
complex (i.e., which vertices belong to which tetrahedron) is the 
same in both the domain and range spaces. Inversion techniques 

based on tetrahedral interpolation for unique forward models can 
be found in Hung [2]. 

 
L*a*b*RGB

 
Figure 1. Three-dimensional forward and inverse model. 

For printing or display systems that use more than three 
colorants or primaries, a dimension mismatch between the domain 
space (the CMYK colorants) and the range space (CIELAB) exists. 
The dimensionality mismatch between the colorant domain and the 
color domain make direct inversion of a model or simplicial 
complex ill posed. Forward model inversions for four-color CMYK 
systems usually rely on dimensional constraints such as under-
color removal (UCR) techniques that control the use of the black 
ink in the input domain [3]. By constraining the behavior of the 
black ink functionally to the C, M, and Y inks, the effective 
dimensionality of the input domain is reduced to the number of 
freely varying colorants (in this case, three). Other forms of 
dimensional constraint have been achieved by partitioning the 
forward model into multiple subspaces of a fixed amount of one of 
the colorants (e.g., black ink) [4]. For each subspace, there is a 
unique forward model that spans a portion of the device’s full 
gamut. Thus, for any value of the constrained color, an inverse 
solution is available provided the target color is within a particular 
subspace. By performing model inversions for multiple values of 
the black ink, a set of colorant domain values can be built. Points 
in this set lie on an ink manifold in the colorant domain. Selection 
of the optimal value can then be made based on a cost function.  

While both the UCR approach and the input domain 
partitioning approach offer successful techniques for reducing the 
dimensionality of four-color forward devices, they suffer 
extensibility issues as the dimensionality of the input domain 
increases. For example, consider the case of a six-color printing 
system that uses cyan, magenta, yellow, black, orange, and green 
colorants. For this six-ink printer, the six-dimensional input 
domain can be tessellated to form a simplicial complex of 6-plexes 
(i.e., simplexes with seven vertices that reside in the six-
dimensional input domain) using a Delaunay tessellation process 
[5]. The range space values of these colorant mixtures can be 
estimated by using a physical model, direct measurement, or 
curve-fitting and interpolation techniques.  
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For the case of CMYK printing systems, the dimensional 
mismatch between the colorant domain and the CIELAB range 
space is one—four dimensions from the CMYK colorant space 
minus three dimensions from the CIELAB color space. As such, 
only one colorant needs to be constrained to overcome this 
dimensional mismatch. For the six-color printer, the dimensional 
mismatch between the colorant domain and the color space range 
is three. It follows that three of the colorants would need to be 
fixed in order to create a dimensional match with the CIELAB 
range space.  

Boll defined a partitioning scheme whereby a seven-color 
printer (CMYKRGB) was partitioned into six four-color models 
where each submodel consisted of three chromatic colorants and a 
black [6]. By adopting a UCR strategy for each of the four-color 
models, he was able to invert the models in a manner similar to 
those described above. Boll also generated inking rules to handle 
the case where a given CIELAB point fell in more than one of the 
six subspaces. These rules had factors that included total ink 
amount; desire to maximize a dominant ink; and vertex-to-vertex 
correlation of ink amounts in the final color table, among others. 

Another multi-ink inverse case was presented by Chen et al. 
[7] for inversion of a six-ink Yule-Nielson spectral Neugebauer 
model, which involved finely sampling the six-ink forward model 
and searching for candidate inverses that minimized a color-
inconstancy index within small regions of the CIELAB color 
space. One limitation with this process is that there is no guarantee 
that the selected point has the minimum color-inconstancy 
properties of the input domain at that colorimetric value.  

These techniques focus on reducing the dimensional 
mismatch between the colorant and color spaces so that unique 
inverses are possible, albeit within a given subdomain. The 
technique described in this paper solves for all domain space 
inverses for a given range space point for forward models of 
arbitrary dimension. This general inverse solution is represented as 
a piecewise linear approximation to a continuous manifold that 
defines the mapping from a CIELAB range space value to the n-
dimensional input colorant domain. 

Ink Manifolds 
Within this manuscript, ink manifolds are defined as the 

connected set of colorant domain space points that map to a given 
CIELAB range space point. Mathematically this relationship can 
be visualized using the function shown in Fig. 2. Suppose the plot 
shown in Fig. 2(a) represents the two-dimensional input domain of 
colorants x1 and x2. This input colorant domain is spanned by a 
complex of 2-plexes (triangles) to form a colorant domain 
tessellation. Consider the case where the colorant domain is related 
to some one-dimensional color space range value z by z = x12 + 
x22, Fig. 2(b). (A physical example might be where z = lightness 
and x1 and x2 represent two black inks.)  

 

 

0 0.5 1
0

0.5
1
0

0.5

1

1.5

2

0 0.5 1
0  

0.5

1  

 
(a)   (b) 
 

Figure 2. (a) Illustration of a two-dimension simplicial complex of the x1,x2 
domain. (b) Image of two-dimensional simplicial complex of the x1,x2 domain 
in the z = x12 + x22 range space. 

For any value of z, there may be multiple x1,x2 colorant 
combinations. The set of x1,x2 colorant values that map to a given 
z value can be approximated by determining where the edges of the 
domain space tessellation cross the given z value. Pictorially, this 
relationship is shown for z = 0.8 in Fig. 3(a). In this example, a 
plane of constant z values is shown intersecting the triangulation 
surface at z = 0.8. The points on the surface triangulation that cross 
the level z value of 0.8 are input domain points on a 1-manifold of 
the x1,x2 colorant domain that map to the range space color value 
of z = 0.8. This 1-manifold is shown in the x1,x2 colorant domain 
space in Fig. 3(b) as a piece-wise linear curve. Thus, any point on 
this manifold is a candidate inverse for the color space value of z = 
0.8. 

 

 
 (a)   (b) 

Figure 3. (a) Intersection of the image of the x1,x2 colorant domain 
tessellation with the range space level value of z = 0.8. (b) Diamonds are the 
locations of the edges of the input tessellation that intersect the level value of 
0.8 in the range space. The line segments connecting these vertices represent 
the piecewise linear approximation to the z = 0.8 manifold. 

Model Inversion 
For the CMYK colorant case, the set of input domain 

simplexes are neither triangles (2-plexes) nor tetrahedrons (3-
plexes), as was the case for the two- or three-colorant cases 
previously discussed, but are 4-plexes (i.e., simplexes with five 
vertices). The set of 4-plexes that span the full CMYK input 
domain are exactly analogous to the set of tetrahedrons that span 
the RGB domain shown in Fig. 1. A relationship of input domain 
CMYK vertices and CIELAB color values can be obtained using a 
physical device model, by direct colorimetric measurement, or by 
computational estimation using a multidimensional fitting process. 
For all of these cases, it is possible to estimate the CIELAB color 
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space value for each vertex in the CMYK domain space simplicial 
complex using the forward model. 

The manifold building process (inverse modeling) shown in 
Figs. 2 and 3 is extensible to forward models that convert from an 
n-dimensional colorant domain to an m-dimensional color range 
where n ≥ m. For most cases, the m-dimensional color space has 
three dimensions such as those for CIELAB. Two additional 
forward-model inversion examples build on the two-colorant 
inversion shown in Figs. 2 and 3 are: (1) Three-dimensional input 
domain mapped to three-dimensional output range results in a 0-
manifold; (2) Four-dimensional input domain mapped to three-
dimensional output range results in a 1-manifold. 

Three-to-three Case 
For the first case, consider the RGB forward model shown in 

Fig. 1, and model inversion for the color space point L*a*b* = [50 
0 0]. A level value of L* =50 can be generated by slicing through 
the CIELAB tessellation parallel to the a*,b* plane. This cutting 
plane intersects the edges of some of the tetrahedrons in the gamut, 
Fig. 4(a,b). Predictions of the RGB domain space code values for 
these intersection points are made using a linear interpolation 
scheme that utilizes barycentric edge weights calculated along the 
edges of the tetrahedron where a given intersection occurred. 
These barycentric edge weights are applied to the domain space 
code values of the tetrahedron that intersected the L* = 50 plane. 
The domain space values are calculated for the intersection points 
for all tetrahedrons that intersect the L* = 50 plane. These points 
all lie on the L* = 50 2-manifold in RGB code value domain. This 
surface is shown in Fig. 4(c ).  

A second slice through the L* = 50 tessellation at a* = 0 
isolates the domain-space 1-manifold to points that map to 
CIELAB points with a* = 0 and L* = 50, and whose b* values 
span the color gamut, Fig. 4(d-f). To fully isolate the CIELAB 
point requires that a third cutting plane at a level of b* = 0 intersect 
the L* = 50 and a* = 0 CIELAB tessellation, shown in Fig. 4(g). 
The result of this third cutting plane is a 0-manifold (a single point) 
in the RGB domain space of point L*a*b* = [50 0 0]. For this 
example, the final manifold is a 0-manifold because the range and 
domain spaces were both three-dimensional. 

Four-to-three Case 
For input domains with more than three colorants, it is 

impossible to visualize the domain space tessellation and the 
manifolds. This limitation does not impact the effectiveness of the 
computational method. While the input domain tessellation can no 
longer be visualized, the image of the tessellation is visible in the 
CIELAB range space, as shown for a single simplex of a CMYK 
tessellation in Fig. 5(a). This simplex has five vertices and eleven 
edges. The complete forward model is composed of a complex of 
similarly shaped simplexes that span the device’s color gamut. In 
order to isolate a single CIELAB value and its inverse domain 
space 1-manifold, three noncoincident cutting planes are 
intersected with the image of the domain space complex.  

Consider the inverse for a CIELAB point of [95 1 1]. For one 
simplex, these stages are shown in Fig. 5(b-f). A level value is first 
computed for a value of L* = 95 and results in four intersection 
points (e1, e2, e3, e4), Fig. 5(b). A tessellation of these points is 
obtained by rotating them into a full rank subspace using a QR 
factorization [8] (Golub and Van Loan) and applying a Delaunay 
tessellation operation, to produce the tessellation shown in Fig. 
5(c). A second cutting plane is intersected with this tessellation at a 
desired a* value and results in three intersection points (e5, e6, e7) 
at constant a* and L* values, Fig. 5(d). A tessellation of these 
points is given by another QR rotation and Delaunay tessellation 
process resulting in the tessellation shown in Fig. 5(e). A third and 
final cutting plane is intersected with this tessellation at the desired 
b* value to isolate the CIELAB point and produce the domain 
space solution to the inverse forward model for that simplex. This 
process is repeated for all simplexes in the CMYK domain space 
complex to produce the complete 1-manifold of CMYK code 
values that map to the specified CIELAB point. 

The interpolation scheme used to estimate the colorant 
domain values for the intersection points is shown in Fig. 6. The 
CMYK values for point e1 shown in Fig. 5(b) are estimated from 
the CMYK values of the vertices v1 and v2 of the given simplex 
being evaluated, using barycentric weights w1 and w2. These 
weights are given by the fractional CIELAB distances between the 
vertices and the intersection point e1. This interpolation is repeated 
for each intersection point at each stage of the isolation process. 

In general, the model inversion process for this technique 
results in domain space manifolds that are three dimensions fewer 
than the number of colorants. As such, three-ink systems result in a 
0-manifold or a unique inverse; four-ink systems result in a 1-
manifold or a piecewise linear curve in the input domain; five-ink 
systems result in 2-manifolds or piecewise linear surfaces in the 
input domain. Therefore, a colorant selection process is needed to 
evaluate the usefulness of the manifold points in a color transform. 
While a general rule for searching these manifolds is beyond the 
scope of this discussion, a reasonable starting point would be to 
consider the vertices of these manifolds as points to screen. 

Sample Calculations 
Because it is not possible to visualize the colorant domain 

manifold surfaces for domains higher than three dimensions, 
tabulated examples are given instead. Consider the inverse model 
calculation of a CMYK printer for a CIELAB value of [50 0 0]. The 
forward model consists of a CMYK domain tessellation of a 34 
lattice of CMYK values (81 vertices) and 384 4-plexes. Note: a 
very sparse CMYK tessellation has been chosen so that a complete 
table of the inverses can be given. More populated forward models 
may result in hundreds of points in the final manifolds. The data 
shown in Table 1 give the CIELAB statistics of the vertices of the 
forward model. For these data, it can be seen that the CMYK gamut 
spans a large region of the CIELAB range. 
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Figure 4. Isosurfacing process through the image of an RGB complex for [50 0 0] CIELAB point. 
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Figure 5. Isosurfacing process through image of a single simplex for a CMYK printer. 
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Figure 6. Linear interpolation scheme for edge intersections. Barycentric 
weights w1 and w2 are linear distance weights between points e, v1, and v2. 

Slicing through the image (the CIELAB edges of the CMYK 
tessellation) at a level value of L* = 50 results in 129 edge 
intersections. The statistics of these points are shown in Table 2. 
The L* dimension is fixed at 50 while the a* and b* dimensions 
vary within the span of the gamut at L* = 50. The second and third 
slices through the L* tessellation result in new tessellations whose 
vertex values are given in Tables 3 and 4. The final manifold, 
represented in Table 5, consists of 24 CMYK points that all map to 
L*a*b* = [50 0 0] for the given 34 tessellation of the device’s 
forward model.  

The vertices of the 1-manifold in the CMYK domain are 
shown in Table 5. Intuitively, these values span CMYK 
combinations that use a lot of black ink (as shown in the first row) 
more so than those that use only CMY inks (as shown in the last 
row). To complete the forward mode inversion, a point from this 1-
manifold would be selected using some goodness criteria such as 
minimum color inconstancy value, minimum total colorant 
amount, minimum halftone noise, etc. This selection process is 
very application specific and beyond the scope of this discussion. 

 

L* a* b*
Min 2.8 -105.2 -71.2
Max 93.9 78.7 95.4

Mean 28.2 -2.4 0.1
Std 23.1 31.4 28.5

Table 1. CIELAB statistics of the image  of the CMYK complex

 
L* a* b*

Min 50.0 -94.3 -59.7
Max 50.0 72.2 59.2

Mean 50.0 -0.4 3.2
Std 0.0 29.4 29.3

Table 2. CIELAB statistics of tessellation after L*=50 slice

 

L* a* b*
Min 50.0 0.0 -47.7
Max 50.0 0.0 55.8

Mean 50.0 0.0 0.7
Std 0.0 0.0 24.3

Table 3. CIELAB statistics of tessellation after L*=50 and a*=0 slices

 
L* a* b*

Min 50.0 0.0 0.0
Max 50.0 0.0 0.0

Mean 50.0 0.0 0.0
Std 0.0 0.0 0.0

Table 4. CIELAB statistics of tessellation after L*=50, a*=0, b*=0 slices

 
 

Table 5. CMYK code values for L*a*b*=[50 0 0] 1-manifold
C M Y K L* a* b*

0.00 0.02 0.06 0.52 50 0 0
0.01 0.02 0.06 0.51 50 0 0
0.02 0.03 0.08 0.50 50 0 0
0.07 0.08 0.13 0.47 50 0 0
0.16 0.18 0.23 0.42 50 0 0
0.21 0.23 0.28 0.39 50 0 0
0.25 0.27 0.32 0.37 50 0 0
0.28 0.30 0.35 0.35 50 0 0
0.31 0.34 0.36 0.34 50 0 0
0.32 0.34 0.36 0.33 50 0 0
0.33 0.34 0.37 0.33 50 0 0
0.43 0.46 0.50 0.12 50 0 0
0.44 0.47 0.52 0.11 50 0 0
0.45 0.47 0.53 0.10 50 0 0
0.45 0.47 0.54 0.09 50 0 0
0.46 0.49 0.57 0.07 50 0 0
0.48 0.50 0.57 0.04 50 0 0
0.49 0.52 0.57 0.03 50 0 0
0.49 0.52 0.57 0.02 50 0 0
0.49 0.52 0.57 0.02 50 0 0
0.50 0.53 0.57 0.01 50 0 0
0.50 0.53 0.57 0.01 50 0 0
0.50 0.53 0.57 0.01 50 0 0
0.50 0.53 0.57 0.00 50 0 0  

Conclusions 
A process for calculating the inverse to a nonunique forward 

device model was given. This process uses computational 
geometry techniques borrowed from level set theory to create 
inverse device models in the form of piecewise linear manifolds 
for given CIELAB color space values. Colorimetric inverses are 
possible using this technique for imaging systems with any number 
of colorants higher than two. 
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