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Abstract 
 
Real-time processing constraints entail that non-linear color 
transforms be implemented using multi-dimensional look-up-
tables (LUT). The LUT cannot be prohibitively large because of 
storage and memory constraints. Hence the LUT is built with a 
sparser input node sampling. The issue of LUT node placement 
becomes important in such cases. The standard approach is to 
place the nodes upon a uniform regular lattice spanning the entire 
input color space. Such a uniform placement of LUT nodes ignores 
certain crucial factors namely the curvature of the non-linear color 
transform, and the statistical distribution of the input – often 
resulting in high approximation errors or equivalently 
objectionable visual artifacts in images processed through the 
LUT.  In this paper, we formulate the underlying cost measure that 
node placement algorithms should seek to minimize.  At the heart 
of this measure is a significance function which quantifies the 
relative importance of input variables. We argue that techniques 
which select truly optimal nodes w.r.t this cost measure are 
computationally infeasible. We then propose an efficient algorithm 
that is essentially based on selecting nodes that lie at maxima of 
the significance function. The latter is iteratively adjusted to 
prevent degenerate node selection. Experimental results across a 
variety of scenarios demonstrate significant transform accuracy 
improvements over classical uniform node-spacing. 

 
1. Introduction 

In many instances along an image path, it is necessary to 
apply color transformations to images and objects. Often, these 
transformations are complex non-linear functions making it 
impractical to process large images in real-time. It is therefore 
common to implement such mathematical transforms as a multi-
dimensional look-up-table. The look-up-table cannot be 
prohibitively large because of processor RAM and cache memory 
constraints. Hence the look-up-table is built with a sparser input 
node sampling. The issue of “node placement” becomes important 
in such cases.  

 
The standard approach is to place nodes upon a uniform 

regular lattice [1].  Non-uniform node spacing on a lattice offers 
benefits in scenarios where the multi-dimensional transform to be 
realized via the LUT exhibits varying curvature as a function of the 
input variables to the LUT. Much attention has been given to 
adapting to the transform both in terms of practical algorithms [2, 
3], and theoretical results in asymptotic cases where the number of 
lattice nodes becomes large [2].  The existing algorithms for node 
selection in multidimensional LUTs [2, 3] however are either 
computationally burdensome or based on a sequential structure 
that proceeds as separable in each dimension [2].  There is a two-

fold motivation then for the work presented in this paper: 1.) there 
is a need for efficient algorithms that can select truly multi-
dimensional nodes, and 2.) while transform curvature is important 
in many color imaging applications, the distribution of input image 
colors, or more generally, a weighting function that quantifies 
relative importance of image colors, can also be a crucial factor in 
node selection for color LUTs. A good example is the use of a 
LUT to implement color editing functions tailored to a specific 
image. 

 
This paper proposes an algorithm that accounts for both these 

considerations in node selection for LUT lattices. We formulate a 
cost measure that node selection algorithms must seek to optimize 
(minimize), and subsequently argue that algorithms must resort to 
combinatorial search to obtain optimal nodes. We hence propose 
an efficient, albeit sub-optimal algorithm that adapts or selects 
LUT nodes based on a significance function of input variables. 
This significance function allows us to unify the concerns of input 
as well as transform adaptability. Our algorithm has modest 
complexity, i.e. order M, where a Mm LUT is desired, m being the 
dimensionality of the input variable to the LUT. A bonus outcome 
of our algorithm is that it can automatically make 
recommendations for a satisfactory LUT size based on the 
“significance function”.  

 
The rest of the paper is organized as follows. Section 2 sets 

the notation for the paper, and formulates the cost measure or 
equivalently the optimization problem of interest. Section 3 
presents a new sub-optimal node selection scheme that accounts 
for critical elements of the cost measure such as the input 
distribution and the transform function curvature. Experimental 
results are presented in Section 4. Section 5 concludes the paper 
with suggestions for future work.  

 
2. Problem Formulation 

Let x in S, where S is a subset of Rm denote the multi-
dimensional input variable to the look-up-table. Also, let g ( ): Rm 

 Rn represent the multi-dimensional transform that the LUT is 
designed to represent. In a typical color transform implementation, 
examples of the LUT input variable x and corresponding output 
value g(x ) include RGB,  Lab, CMYK etc. Because the LUT 
realization only provides an approximation to the true transform, 
we define the approximation error as  
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N
 (a subset of S) ={x

1
, x

2
, …, x

N
} represents the set of nodes 

or equivalently the lattice that defines the LUT. 
 
ĝ (x, S

N
) – is an approximation to g( ) built out of evaluations 

of  g( ) at the node points and suitable multi-dimensional 
interpolation for all x in between. 

 
p(x): Rm  R+ , a non-negative input importance function. 

Example instantiations include a histogram of input colors to the 
LUT, or a map that attaches greater importance to memory colors 
such as skin tones, etc. 
 

The cost measure E(S
N
) in Eqn. (1) is clearly a function of the 

LUT nodes. The goal of LUT design algorithms is hence to make 
an intelligent choice of S

N
.  To that end, it must be realized that for 

a fixed number of nodes N, an optimal selection of the subset S
N 

of 
S that globally minimizes E(S

N
) is a hard problem. Part of the 

fundamental difficulty results from the fact that the inputs are 
multi-dimensional. Sequential approaches that use separable grid 
structures [2] have been investigated with some success for 
providing efficient schemes. That said, methods that select truly 
multidimensional nodes typically do not scale well as a function of 
the input dimension m [3]. 

 
The discerning reader may also observe that the solution  to 

Eqn. (1) depends on several factors like the multi-dimensional 
transform g( ), the dimensionality m of the input and type of 
interpolation used, i.e. linear, popular 3-D, 4-D geometries like 
tetrahedral, pentahedral etc. An appreciation of the hardness of the 
problem can also be gauged by observing the special case, g(x) = 
x, and g(x, S

N
) = Q(x), i.e. vector quantization of x to the set S

N
; 

which is well studied [4], and best known algorithms can only 
provide local minima. In fact, without loss of generality, it can 
shown by equivalent problems in graph theory [5] that the problem 
in Eqn. (1) lies in the NP-class, and finding the optima entails 
computationally infeasible combinatorial  search. 

 
3. Sort-Select-Damp: An efficient, sub-

optimal approach 
In this work, we present an algorithm that provides a simple 

and efficient solution to the node selection problem in Eqn (1). 
While we do not make guarantees of optimality, our algorithm 
incorporates the key components of the cost measure, namely the 
input distribution p(x), and the curvature of the multi-dimensional 
transform g(x).   
 
The inputs to our algorithm comprise: 

a.  A set of input values S = {xi ∈ Rm, i = 1,2,..n} 
which serves as a statistical representation of the 
source/input data. 
b.  A non-negative input importance function p(x) as   
       described earlier in Section 2. 
c.  A distance function d(x,y) such that: 
 

d(x,y) >= 0, for all x, y in S.  (2) 
d(x,y) = 0, implies x = y and vice-versa. 

 

The algorithm is then divided in three parts:  
1) Preprocessing to define a significance function that 
brings together the factors of input image distribution 
and function curvature into LUT node design.   

 
2) Multi-dimensional node selection via sort-select-
damp iterations, and  
 
3)Post-processing: separable per-dimension operation 
to enable compliance with pre-determined rules of 
number of node levels and node spacing along each 
individual dimension. 

 
Each step is now elaborated. 

 
Step 1: Preprocessing 

Define a non-negative significance function s(x) as follows: 
 

(3)     )))((det().1()(.)( xxx gHessianps αα −+=  
 
The first term in the linear weighting is the input distribution. The 
second term uses the magnitude of the determinant of the second 
derivative matrix (Hessian) of g(x) as a measure of the transform 
curvature. The quantity α in [0,1] trades off relative importance of 
image distribution vs. function curvature. Unless, stated otherwise 
it is also assumed for ensuing discussion that s(x) is normalized to 
lie in [0, 1]. 
 
Step 2: Multi-dimensional node selection based on 
“Sort-Select-Damp” procedure  
Fig. 1 Illustrates this procedure. 
 

• The “sort” step simply arranges the nodes in 
decreasing order of significance. 

• The “select” step picks the node(s) with the 
maximum significance.  

• The significance function is then multiplied by a 
damping function that ensures that no subsequent 
node selections lie too close to the current selection 
of nodes. nj is an m-dimensional node value, with 
corresponding values  nj(k) along the k-th 
dimension.  

 
Several choices of the distance or dampening function d(x, y) 

are possible. The most general requirements were given in Eqn. 
(2). We’ll illustrate shortly in Fig. 2 that the distance function 
essentially trades-off between the significance function s(x) and 
the relative positioning of the nodes. It is therefore important to 
select the distance function carefully so that an appropriate balance 
is obtained. Inspired by previous efforts in color palette design [6], 
we pick a distance function of the form: 

(4)       0),1()(
2

>−= −− ββ yxyx, ed  
The damp step is crucial in that it re-assigns values to the 

significance function s(x) by “dampening” it with a distance 
weighting function d(x, y). Such dampening serves two purposes: 
1.) for x = n

j 
the revised s(x) is forced to 0 making sure that it is not 
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selected again, and 2.) a distance penalty is attached for picking 
nodes “too close” to each other.  
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Build importance 
function s(x) 

Select node nj such that 
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i

 

p(x)←p=s(x)d(x,nj) 

YesNo Terminate

S = {xi in Rm, i = 1, 2, …, n} p(x) 

Damp

Sort/ 
select 

g(x) 

 
Fig. 1 Node selection via sort-select-damp procedure  

The second point is illustrated below in Fig. 2 by a 1-
dimensional example. Fig. 2(a) plots s(x) vs. x, Fig. 2(b) plots d(x, 
n1) where n

1 
denotes the node that is selected first, i.e. n

1 
= arg max 

s(x). In Fig. 2(c) we plot s(x).d(x, n1). The significance of the 
dampening function d(.,.) is readily apparent from Figs. 2 (a)-(c).  
In particular, in the absence of such a distance based dampening of 
s(x), all nodes would be selected in very close proximity of n

1
 

resulting in undesirable node spacing. 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
(a)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) 

Fig. 2: Illustrating the effect of the dampening function 

Note that the termination criterion is directly related to the 
area under the distance-weighted significance function s(x). This 
quantity can be thought of as a rough indication of the 
approximation error of the LUT. Thus for a given s(x) and distance 
weighting d(x,y), the threshold T automatically determines the 
number of nodes selected through the process, i.e. smaller T results 
in a greater number of nodes. A reasonable value of T can be 
determined empirically by experimenting over many data sets 

 
Step 3: Post-processing algorithm  

One potential problem with the aforementioned algorithm is 
that while the nodes nj are well separated in m-dimensional space, 
the projections onto the individual LUT axes might result in node 
levels being coincident or excessively close to each other. We thus 
perform a post-processing step to avoid this situation and enforce a 
minimum distance between adjacent nodes along each input 
dimension of the LUT. Additionally, for some applications it may 
be necessary to impose constraints on the number of node levels 
along each dimension. For example, ICC profiles require the same 
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number of node levels along each dimension. To satisfy this 
constraint, additional node levels may have to be added along 
some of the dimensions. This is accomplished in a subsequent 
post-processing step. Let us denote the number of multi-
dimensional nodes {nj} that the algorithm terminates with 
as M, i.e. j = 1,2,…M. Without loss of generality, let {n1, n2, 
nM} represent sorted scalar values of the nodes in the kth 
dimension. That is, 

))(),...,(),(sort(},...,,{ 2121 kkknnn MM nnn=  
And hence, n1 <  n2 < … < nM.      
 

Let delmin represent the minimum allowable node-spacing 
along the kth dimension. Further, let n

min
 and n

max
 represent the 

“boundary values” that must be appended to the node vector. In 
particular, n

min 
< n

1
  and   n

max
 > n

M
. Also denote s

k
(n)  to be the 

separable significance function for the k-th dimension obtained 
from the joint multi-dimensional significance function s(x). As 
before, s

k
(n) is normalized to lie in [0, 1]. To make sure that the 

boundary values always appear in the final node selection we set 
s

k
(n

min
) = 1, and s

k
(n

max
) = 1. Also let us represent n

min
 by n

0
 and n

max
 

by n
M+1

. 
 
Step 3A: Enforcing priority-based minimum node-
spacing 
if ( (ni+1 – ni) < delmin) 
  if s(ni+1) > s(ni) then retain ni+1 and eliminate ni 
  else retain ni and eliminate ni+1 
Decrement i till end of node list. Repeat for all consecutive 
node pairs in the list. 

 
Clearly the above procedure cannot increase the number of 

nodes in the list. Hence assume after this step we are left with K 
nodes along the kth dimension, where K < M+2.  

 
Step 3B: Node addition via median-cut placement 

For reasons given earlier, it is sometimes necessary to enforce 
explicit constraints on the number of nodes along each dimension. 
An algorithm for accomplishing this is described next. 

 
Let P

k
 denote the desired LUT size along the kth dimension, k 

= 1,2,..m, where P
k
 >= M. As an example, a 3-D input LUT would 

make a lattice of size P
1
 x P

2
 x P

3
. Given nodes n

1
 through n

K
: 

 
While (K < Pk) 
- Determine index i such that i is in 1,2,…K and that : 
    i = arg max |ni+1 – ni |, i = 1, 2, ., N 
- Place a node n* = (ni + ni+1)/2 between ni and ni+1 
- K  K + 1 
 
The post-processing steps 3A and 3B are performed 
separately along each dimension to obtain a final lattice of 
size N = Π Pi. 
 
4.    Experimental Results 
 
We present results for adapting the nodes of a 2-D LUT meant to 
approximate an R2  R function. The function to be approximated 
via the LUT is plotted in Fig. 3 (a).  Additionally, the input to the 

function is designed to be drawn from a 2-D probability density 
function synthesized as the mixture of four Gaussians with means 
(10, 10), (10,-10), (-10,-10) and (-10, 10) respectively. The 
probability density is plotted in Fig. 3 (b).  Fig. 3 (c) plots the 
magnitude of the determinant of the second derivative matrix, i.e. 
the Hessian for this function. A high value for the Hessian 
indicates regions of high curvature [3]. 

 
4.1 Visualization of Node Placement 
 
We first intuitively demonstrate the merits of our algorithm by 
visualizing node-placement for three cases: 1.) density based 
placement, i.e. s(x) = p(x) or Eqn. (3) with  = 1, 2.) curvature 
based placement or s(x) = | det(Hessian(g(x))) | or Eqn. (3) with  = 
0, and 3.) joint node placement by using an intermediate . 
 
From Fig. 3 (b) it is clear that the density is highest in the 
neighborhood of the four local maxima (10,10), (10,-10), (-10,-10) 
and (-10,10). It is desirable hence that more LUT nodes should be 
placed in regions of higher density. 

 
In Fig. 4 (a), a uniform 11 x 11 grid is overlaid on the contours of 
the probability density in Fig. 3 (b), while in Fig. 4 (b), the same 
contour plot is shown but this time overlaid with 2-D LUT nodes 
derived using our proposed algorithm, and density based 
placement. Comparing Figs. 4 (a) and 4 (b), it is clear that the 
proposed LUT node selection respects the underlying input density 
while the uniform grid does not. Fig. 4 (c) shows node placement 
based on setting the significance function to simply a measure of 
curvature.  Comparing Figs. 4 (c) and 3 (c), it is clear that once 
again the node placement is dense in regions of high curvature and 
sparse otherwise. Finally, Fig. 4 (d) visualizes node placement 
when a linear combination of the density and curvature measures 
instantiated with  = 0.3 was used as the significance function for 
our algorithm. As Fig. 4 (d) reveals, in this case, the node 
placement respects both considerations. In practice,  could be 
optimized w.r.t an ensemble of representative input images and 
color transformations.  

 
4.2   Quantitative Measure of Function Approximation  
 
Next, we provide quantitative results in showing 
improvements in approximating the 2-D transform via the 
LUT designed using our proposed algorithm. 
 
Recall the error function E(S

N
) in Eqn. (1) evaluated for a certain 

node placement. To compute this error with generated 1000 2-D 
input values to be processed through the LUT from the Gaussian 
mixture density described earlier. Bilinear interpolation was used 
to determine outputs for input values other than the LUT nodes. 
The gain achieved by using proposed lattice design that adapts to a 
significance function can then be expressed as: 
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Fig. 3: (a) the 2-D function to be approximated, (b) the 
2-D probability density function of input variables, (c) 
plot of the magnitude of the Hessian of the 2-D function, 
curvature is high where the Hessian peaks. 

 
LUT Lattice Design 

 
Gain in dB over uniform node 

spacing 

 
Probability Density Based 

(α = 1) 

 
18 dB 

 
Curvature Based 

(α = 0) 

 
10.3 dB 

 
Based on  joint significance  

function (α = 0.3) 

 
21 dB 

 
Table 1: Gain in dB over uniform node placement 

(5)                  log20
Adaptive

uniform

E
E

J =  

 
where E uniform and EAdaptive  respectively refer to the error as 
in Eqn (1) for uniform vs. significance function adapted  
node placement.  For each of the three cases visualized in 
Figs. 4(b) through (d), the corresponding gain is quantified 
in Table 2.  A gain of 20 dB for example means that the 
error via adaptive node-spacing is about one-tenth of the 
error incurred with uniform node-spacing. (the logarithm is 
base 10). The success in approximating multi-dimensional 
transforms is hence readily apparent. 
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Fig. 4: Visualization of LUT node placement based on 
different criterion. 
 
5.   Conclusion  
 
Designing regular lattices for look-up-tables that are desired to 
approximate complex non-linear multi-dimensional mappings 
poses a significant challenge. In all generality, for a pre-
determined LUT size or equivalently the number of nodes, the 
optimal node selection problem is computationally intractable. 
This paper proposes an efficient, though sub-optimal algorithm to 
determine lattice nodes for color LUTs. The proposed method 
makes departures from previous efforts in two respects: 1.) while 
much existing work focuses exclusively on adapting nodes to 
curvature of the transform, the proposed sort-damp-select 
algorithm adapts to both the input distribution and transform 
curvature by unifying them into a single significance function, and 
2.) the proposed method offers attractive scalability even  as multi-
dimensional nodes are selected in contrast to past techniques, 
which resort to  separable node selection for efficiency. An 
exciting opportunity for future work includes providing local 
optimality guarantees in node selection under fixed interpolation 
models. Another key problem is the joint optimization of the node 
positions as well as the output value to be placed at the nodes. 
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