

Sort-Select-Damp: An efficient strategy for color look-up table
lattice design
Vishal Monga and Raja Bala, Xerox Research Center Webster, NY, USA

Abstract

Real-time processing constraints entail that non-linear color
transforms be implemented using multi-dimensional look-up-
tables (LUT). The LUT cannot be prohibitively large because of
storage and memory constraints. Hence the LUT is built with a
sparser input node sampling. The issue of LUT node placement
becomes important in such cases. The standard approach is to
place the nodes upon a uniform regular lattice spanning the entire
input color space. Such a uniform placement of LUT nodes ignores
certain crucial factors namely the curvature of the non-linear color
transform, and the statistical distribution of the input – often
resulting in high approximation errors or equivalently
objectionable visual artifacts in images processed through the
LUT. In this paper, we formulate the underlying cost measure that
node placement algorithms should seek to minimize. At the heart
of this measure is a significance function which quantifies the
relative importance of input variables. We argue that techniques
which select truly optimal nodes w.r.t this cost measure are
computationally infeasible. We then propose an efficient algorithm
that is essentially based on selecting nodes that lie at maxima of
the significance function. The latter is iteratively adjusted to
prevent degenerate node selection. Experimental results across a
variety of scenarios demonstrate significant transform accuracy
improvements over classical uniform node-spacing.

1. Introduction

In many instances along an image path, it is necessary to
apply color transformations to images and objects. Often, these
transformations are complex non-linear functions making it
impractical to process large images in real-time. It is therefore
common to implement such mathematical transforms as a multi-
dimensional look-up-table. The look-up-table cannot be
prohibitively large because of processor RAM and cache memory
constraints. Hence the look-up-table is built with a sparser input
node sampling. The issue of “node placement” becomes important
in such cases.

The standard approach is to place nodes upon a uniform

regular lattice [1]. Non-uniform node spacing on a lattice offers
benefits in scenarios where the multi-dimensional transform to be
realized via the LUT exhibits varying curvature as a function of the
input variables to the LUT. Much attention has been given to
adapting to the transform both in terms of practical algorithms [2,
3], and theoretical results in asymptotic cases where the number of
lattice nodes becomes large [2]. The existing algorithms for node
selection in multidimensional LUTs [2, 3] however are either
computationally burdensome or based on a sequential structure
that proceeds as separable in each dimension [2]. There is a two-

fold motivation then for the work presented in this paper: 1.) there
is a need for efficient algorithms that can select truly multi-
dimensional nodes, and 2.) while transform curvature is important
in many color imaging applications, the distribution of input image
colors, or more generally, a weighting function that quantifies
relative importance of image colors, can also be a crucial factor in
node selection for color LUTs. A good example is the use of a
LUT to implement color editing functions tailored to a specific
image.

This paper proposes an algorithm that accounts for both these

considerations in node selection for LUT lattices. We formulate a
cost measure that node selection algorithms must seek to optimize
(minimize), and subsequently argue that algorithms must resort to
combinatorial search to obtain optimal nodes. We hence propose
an efficient, albeit sub-optimal algorithm that adapts or selects
LUT nodes based on a significance function of input variables.
This significance function allows us to unify the concerns of input
as well as transform adaptability. Our algorithm has modest
complexity, i.e. order M, where a Mm LUT is desired, m being the
dimensionality of the input variable to the LUT. A bonus outcome
of our algorithm is that it can automatically make
recommendations for a satisfactory LUT size based on the
“significance function”.

The rest of the paper is organized as follows. Section 2 sets

the notation for the paper, and formulates the cost measure or
equivalently the optimization problem of interest. Section 3
presents a new sub-optimal node selection scheme that accounts
for critical elements of the cost measure such as the input
distribution and the transform function curvature. Experimental
results are presented in Section 4. Section 5 concludes the paper
with suggestions for future work.

2. Problem Formulation

Let x in S, where S is a subset of Rm denote the multi-
dimensional input variable to the look-up-table. Also, let g (): Rm

 Rn represent the multi-dimensional transform that the LUT is
designed to represent. In a typical color transform implementation,
examples of the LUT input variable x and corresponding output
value g(x) include RGB, Lab, CMYK etc. Because the LUT
realization only provides an approximation to the true transform,
we define the approximation error as

(1) xxxx

x
∫
∈

−=
S

NN dSggpSE 2),(ˆ)()()(

 Where:

16th Color Imaging Conference Final Program and Proceedings 247

S
N
 (a subset of S) ={x

1
, x

2
, …, x

N
} represents the set of nodes

or equivalently the lattice that defines the LUT.

ĝ (x, S

N
) – is an approximation to g() built out of evaluations

of g() at the node points and suitable multi-dimensional
interpolation for all x in between.

p(x): Rm R+ , a non-negative input importance function.

Example instantiations include a histogram of input colors to the
LUT, or a map that attaches greater importance to memory colors
such as skin tones, etc.

The cost measure E(S
N
) in Eqn. (1) is clearly a function of the

LUT nodes. The goal of LUT design algorithms is hence to make
an intelligent choice of S

N
. To that end, it must be realized that for

a fixed number of nodes N, an optimal selection of the subset S
N

of
S that globally minimizes E(S

N
) is a hard problem. Part of the

fundamental difficulty results from the fact that the inputs are
multi-dimensional. Sequential approaches that use separable grid
structures [2] have been investigated with some success for
providing efficient schemes. That said, methods that select truly
multidimensional nodes typically do not scale well as a function of
the input dimension m [3].

The discerning reader may also observe that the solution to

Eqn. (1) depends on several factors like the multi-dimensional
transform g(), the dimensionality m of the input and type of
interpolation used, i.e. linear, popular 3-D, 4-D geometries like
tetrahedral, pentahedral etc. An appreciation of the hardness of the
problem can also be gauged by observing the special case, g(x) =
x, and g(x, S

N
) = Q(x), i.e. vector quantization of x to the set S

N
;

which is well studied [4], and best known algorithms can only
provide local minima. In fact, without loss of generality, it can
shown by equivalent problems in graph theory [5] that the problem
in Eqn. (1) lies in the NP-class, and finding the optima entails
computationally infeasible combinatorial search.

3. Sort-Select-Damp: An efficient, sub-

optimal approach
In this work, we present an algorithm that provides a simple

and efficient solution to the node selection problem in Eqn (1).
While we do not make guarantees of optimality, our algorithm
incorporates the key components of the cost measure, namely the
input distribution p(x), and the curvature of the multi-dimensional
transform g(x).

The inputs to our algorithm comprise:

a. A set of input values S = {xi ∈ Rm, i = 1,2,..n}
which serves as a statistical representation of the
source/input data.
b. A non-negative input importance function p(x) as
 described earlier in Section 2.
c. A distance function d(x,y) such that:

d(x,y) >= 0, for all x, y in S. (2)
d(x,y) = 0, implies x = y and vice-versa.

The algorithm is then divided in three parts:
1) Preprocessing to define a significance function that
brings together the factors of input image distribution
and function curvature into LUT node design.

2) Multi-dimensional node selection via sort-select-
damp iterations, and

3)Post-processing: separable per-dimension operation
to enable compliance with pre-determined rules of
number of node levels and node spacing along each
individual dimension.

Each step is now elaborated.

Step 1: Preprocessing

Define a non-negative significance function s(x) as follows:

(3))))((det().1()(.)(xxx gHessianps αα −+=

The first term in the linear weighting is the input distribution. The
second term uses the magnitude of the determinant of the second
derivative matrix (Hessian) of g(x) as a measure of the transform
curvature. The quantity α in [0,1] trades off relative importance of
image distribution vs. function curvature. Unless, stated otherwise
it is also assumed for ensuing discussion that s(x) is normalized to
lie in [0, 1].

Step 2: Multi-dimensional node selection based on
“Sort-Select-Damp” procedure
Fig. 1 Illustrates this procedure.

• The “sort” step simply arranges the nodes in
decreasing order of significance.

• The “select” step picks the node(s) with the
maximum significance.

• The significance function is then multiplied by a
damping function that ensures that no subsequent
node selections lie too close to the current selection
of nodes. nj is an m-dimensional node value, with
corresponding values nj(k) along the k-th
dimension.

Several choices of the distance or dampening function d(x, y)

are possible. The most general requirements were given in Eqn.
(2). We’ll illustrate shortly in Fig. 2 that the distance function
essentially trades-off between the significance function s(x) and
the relative positioning of the nodes. It is therefore important to
select the distance function carefully so that an appropriate balance
is obtained. Inspired by previous efforts in color palette design [6],
we pick a distance function of the form:

(4) 0),1()(
2

>−= −− ββ yxyx, ed
The damp step is crucial in that it re-assigns values to the

significance function s(x) by “dampening” it with a distance
weighting function d(x, y). Such dampening serves two purposes:
1.) for x = n

j
the revised s(x) is forced to 0 making sure that it is not

248 ©2008 Society for Imaging Science and Technology

selected again, and 2.) a distance penalty is attached for picking
nodes “too close” to each other.

Is ∑ <
i

i Txs)(?

Build importance
function s(x)

Select node nj such that

)(maxarg* iSxj xsxn
∈

==
i

p(x)←p=s(x)d(x,nj)

YesNo Terminate

S = {xi in Rm, i = 1, 2, …, n} p(x)

Damp

Sort/
select

g(x)

Fig. 1 Node selection via sort-select-damp procedure

The second point is illustrated below in Fig. 2 by a 1-
dimensional example. Fig. 2(a) plots s(x) vs. x, Fig. 2(b) plots d(x,
n1) where n

1
denotes the node that is selected first, i.e. n

1
= arg max

s(x). In Fig. 2(c) we plot s(x).d(x, n1). The significance of the
dampening function d(.,.) is readily apparent from Figs. 2 (a)-(c).
In particular, in the absence of such a distance based dampening of
s(x), all nodes would be selected in very close proximity of n

1

resulting in undesirable node spacing.

(a)

(b)

(c)

Fig. 2: Illustrating the effect of the dampening function

Note that the termination criterion is directly related to the
area under the distance-weighted significance function s(x). This
quantity can be thought of as a rough indication of the
approximation error of the LUT. Thus for a given s(x) and distance
weighting d(x,y), the threshold T automatically determines the
number of nodes selected through the process, i.e. smaller T results
in a greater number of nodes. A reasonable value of T can be
determined empirically by experimenting over many data sets

Step 3: Post-processing algorithm

One potential problem with the aforementioned algorithm is
that while the nodes nj are well separated in m-dimensional space,
the projections onto the individual LUT axes might result in node
levels being coincident or excessively close to each other. We thus
perform a post-processing step to avoid this situation and enforce a
minimum distance between adjacent nodes along each input
dimension of the LUT. Additionally, for some applications it may
be necessary to impose constraints on the number of node levels
along each dimension. For example, ICC profiles require the same

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

s(x)*d(x,n1)

n1
n2 n3

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d(x,n1)

n1 n2 n3

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
s(x)

n1 n2
n3

16th Color Imaging Conference Final Program and Proceedings 249

number of node levels along each dimension. To satisfy this
constraint, additional node levels may have to be added along
some of the dimensions. This is accomplished in a subsequent
post-processing step. Let us denote the number of multi-
dimensional nodes {nj} that the algorithm terminates with
as M, i.e. j = 1,2,…M. Without loss of generality, let {n1, n2,
nM} represent sorted scalar values of the nodes in the kth
dimension. That is,

))(),...,(),(sort(},...,,{ 2121 kkknnn MM nnn=
And hence, n1 < n2 < … < nM.

Let delmin represent the minimum allowable node-spacing
along the kth dimension. Further, let n

min
 and n

max
 represent the

“boundary values” that must be appended to the node vector. In
particular, n

min
< n

1
 and n

max
 > n

M
. Also denote s

k
(n) to be the

separable significance function for the k-th dimension obtained
from the joint multi-dimensional significance function s(x). As
before, s

k
(n) is normalized to lie in [0, 1]. To make sure that the

boundary values always appear in the final node selection we set
s

k
(n

min
) = 1, and s

k
(n

max
) = 1. Also let us represent n

min
 by n

0
 and n

max

by n
M+1

.

Step 3A: Enforcing priority-based minimum node-
spacing
if ((ni+1 – ni) < delmin)
 if s(ni+1) > s(ni) then retain ni+1 and eliminate ni
 else retain ni and eliminate ni+1
Decrement i till end of node list. Repeat for all consecutive
node pairs in the list.

Clearly the above procedure cannot increase the number of

nodes in the list. Hence assume after this step we are left with K
nodes along the kth dimension, where K < M+2.

Step 3B: Node addition via median-cut placement

For reasons given earlier, it is sometimes necessary to enforce
explicit constraints on the number of nodes along each dimension.
An algorithm for accomplishing this is described next.

Let P

k
 denote the desired LUT size along the kth dimension, k

= 1,2,..m, where P
k
 >= M. As an example, a 3-D input LUT would

make a lattice of size P
1
 x P

2
 x P

3
. Given nodes n

1
 through n

K
:

While (K < Pk)
- Determine index i such that i is in 1,2,…K and that :
 i = arg max |ni+1 – ni |, i = 1, 2, ., N
- Place a node n* = (ni + ni+1)/2 between ni and ni+1
- K K + 1

The post-processing steps 3A and 3B are performed
separately along each dimension to obtain a final lattice of
size N = Π Pi.

4. Experimental Results

We present results for adapting the nodes of a 2-D LUT meant to
approximate an R2 R function. The function to be approximated
via the LUT is plotted in Fig. 3 (a). Additionally, the input to the

function is designed to be drawn from a 2-D probability density
function synthesized as the mixture of four Gaussians with means
(10, 10), (10,-10), (-10,-10) and (-10, 10) respectively. The
probability density is plotted in Fig. 3 (b). Fig. 3 (c) plots the
magnitude of the determinant of the second derivative matrix, i.e.
the Hessian for this function. A high value for the Hessian
indicates regions of high curvature [3].

4.1 Visualization of Node Placement

We first intuitively demonstrate the merits of our algorithm by
visualizing node-placement for three cases: 1.) density based
placement, i.e. s(x) = p(x) or Eqn. (3) with = 1, 2.) curvature
based placement or s(x) = | det(Hessian(g(x))) | or Eqn. (3) with =
0, and 3.) joint node placement by using an intermediate .

From Fig. 3 (b) it is clear that the density is highest in the
neighborhood of the four local maxima (10,10), (10,-10), (-10,-10)
and (-10,10). It is desirable hence that more LUT nodes should be
placed in regions of higher density.

In Fig. 4 (a), a uniform 11 x 11 grid is overlaid on the contours of
the probability density in Fig. 3 (b), while in Fig. 4 (b), the same
contour plot is shown but this time overlaid with 2-D LUT nodes
derived using our proposed algorithm, and density based
placement. Comparing Figs. 4 (a) and 4 (b), it is clear that the
proposed LUT node selection respects the underlying input density
while the uniform grid does not. Fig. 4 (c) shows node placement
based on setting the significance function to simply a measure of
curvature. Comparing Figs. 4 (c) and 3 (c), it is clear that once
again the node placement is dense in regions of high curvature and
sparse otherwise. Finally, Fig. 4 (d) visualizes node placement
when a linear combination of the density and curvature measures
instantiated with = 0.3 was used as the significance function for
our algorithm. As Fig. 4 (d) reveals, in this case, the node
placement respects both considerations. In practice, could be
optimized w.r.t an ensemble of representative input images and
color transformations.

4.2 Quantitative Measure of Function Approximation

Next, we provide quantitative results in showing
improvements in approximating the 2-D transform via the
LUT designed using our proposed algorithm.

Recall the error function E(S

N
) in Eqn. (1) evaluated for a certain

node placement. To compute this error with generated 1000 2-D
input values to be processed through the LUT from the Gaussian
mixture density described earlier. Bilinear interpolation was used
to determine outputs for input values other than the LUT nodes.
The gain achieved by using proposed lattice design that adapts to a
significance function can then be expressed as:

250 ©2008 Society for Imaging Science and Technology

-50

0

50

-50

0

50
-1

-0.5

0

0.5

1

mesh plot of function being approximated

 (a)

-50

0

50

-50

0

50
0

1

2

3

4

x 10
-3

 (b)

-50

0

50

-50

0

50
0

0.02

0.04

0.06

0.08

0.1

0.12

mesh plot of determinant of Hessian

(c)

Fig. 3: (a) the 2-D function to be approximated, (b) the
2-D probability density function of input variables, (c)
plot of the magnitude of the Hessian of the 2-D function,
curvature is high where the Hessian peaks.

LUT Lattice Design

Gain in dB over uniform node

spacing

Probability Density Based

(α = 1)

18 dB

Curvature Based

(α = 0)

10.3 dB

Based on joint significance

function (α = 0.3)

21 dB

Table 1: Gain in dB over uniform node placement

(5) log20
Adaptive

uniform

E
E

J =

where E uniform and EAdaptive respectively refer to the error as
in Eqn (1) for uniform vs. significance function adapted
node placement. For each of the three cases visualized in
Figs. 4(b) through (d), the corresponding gain is quantified
in Table 2. A gain of 20 dB for example means that the
error via adaptive node-spacing is about one-tenth of the
error incurred with uniform node-spacing. (the logarithm is
base 10). The success in approximating multi-dimensional
transforms is hence readily apparent.

16th Color Imaging Conference Final Program and Proceedings 251

0.0005 0.0005

0.0
00

5

0.0005

0.000
5

0.001 0.001

0.001
0.001

0.0015

0.001
5

0.0015

0.001
5

0.002

0.
00

2

0.002

0.002

0.002

0.0025

0.0025

0.0025

0.0025

0.
00

3

0.003

0.003
0.003

Uniform Node Spacing

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

(a)

0.0005 0.0005

0.
00

05

0.0005

0.000
5

0.001 0.001
0.001

0.001

0.0015

0.001
5

0.0015

0.001
5

0.002

0.
00

2

0.002

0.002

0.002

0.0025

0.0025

0.
00

25

0.0025

0.003

0.003

0.
00

3

0.003

Input-adaptive Node Spacing - Prob. based

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

(b)

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50
Input-adaptive Node Spacing - Curvature based

(c)

-50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50
Input-adaptive Node Spacing - Joint

(d)

Fig. 4: Visualization of LUT node placement based on
different criterion.

5. Conclusion

Designing regular lattices for look-up-tables that are desired to
approximate complex non-linear multi-dimensional mappings
poses a significant challenge. In all generality, for a pre-
determined LUT size or equivalently the number of nodes, the
optimal node selection problem is computationally intractable.
This paper proposes an efficient, though sub-optimal algorithm to
determine lattice nodes for color LUTs. The proposed method
makes departures from previous efforts in two respects: 1.) while
much existing work focuses exclusively on adapting nodes to
curvature of the transform, the proposed sort-damp-select
algorithm adapts to both the input distribution and transform
curvature by unifying them into a single significance function, and
2.) the proposed method offers attractive scalability even as multi-
dimensional nodes are selected in contrast to past techniques,
which resort to separable node selection for efficiency. An
exciting opportunity for future work includes providing local
optimality guarantees in node selection under fixed interpolation
models. Another key problem is the joint optimization of the node
positions as well as the output value to be placed at the nodes.

6. References
1. R. Bala, “Device Characterization”, Digital Color Imaging

Handbook, Chapter 5. CRC Press, 2003.
2. J. Z. Chang, J. P. Allebach, and C. A. Bouman, "Sequential

Linear Interpolation of Multidimensional Functions," IEEE
Trans. on Image Processing, Vol. 6, pp. 1231- 1245, September
1997.

3. M. J. Baines, “Algorithms for Optimal Discontinuous Piecewise
Linear and Constant L2 Fits to Continuous Functions”,
Mathematics of Computation, vol. 62, pp. 645-669, April 1994.

4. Vector Quantization and Signal Compression, A. Gersho and R.
Gray, Springer Verlag, 1990.

252 ©2008 Society for Imaging Science and Technology

5. Introduction to Graph Theory, D. West, Prentice Hall, 2nd
Edition, 2001.

6. G. Braudaway, “A procedure for optimum choice of a small
number of colors from a large color palette for color imaging”,
Proc. Electronic Imaging ’86, Boston, MA, Nov 86, pp75-79.

Author Biography

Vishal Monga received his B. Tech degree from Indian Institute of
Technology (IIT), Guwahati in 2001 and his M.S. and PhD
degrees in Electrical Engineering from The University of Texas at
Austin in May 2003 and Aug 2005 respectively. His research
interests lie broadly in statistical signal and image processing. He
has researched problems in color imaging, multimedia security
and statistical learning. In color imaging, his interests span a
variety of processing blocks in the printer and digital camera
pipeline including color halftoning by error diffusion, color device
modeling, and non-separable color transforms.

16th Color Imaging Conference Final Program and Proceedings 253

