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Abstract

Fixed location cameras, such as panoramic cameras or
surveillance cameras, are very common. In images taken with
these cameras, there will be changes in lighting and dynamic im-
age content, but there will also be constant objects in the back-
ground. We propose to solve for color constancy in this frame-
work. We use a set of images to recover the scenes’ illuminants
using only a few surfaces present in the scene. Our method re-
trieves the illuminant in every image by minimizing the difference
between the reflectance spectra of the redundant elements’ sur-
faces or, more precisely, between their corresponding sensor re-
sponse values. It is assumed that these spectra are constant across
images taken under different illuminants. We also recover an es-
timate of the reflectance spectra of the selected elements. Experi-
ments on synthetic and real images validate our method.

Introduction

Color constancy and illuminant retrieval have been an impor-
tant subject of research for over 30 years and many approaches
have been proposed. Mathematically, the problem of retrieving
an illuminant spectra from triplets of RGB values is ill-posed, and
it is necessary to introduce constraints and assumptions to reduce
the number of unknowns in the equations. This can be done, for
example, by introducing assumptions on the image content [10],
statistics [1], the surface properties such as specular reflections
[11], or by using redundancy in images ([6], [3], [12], and [17]).

‘We propose to solve for color constancy in the particular case
of fixed location cameras, such as security or panoramic cameras.
In this case, we have scene objects that will be present in every
image, despite changing dynamic scene content and illumination.
We will use these elements to reduce the dimensionality of the
illuminant retrieval problem. We assume that the reflectances of
those static objects, though unknown, remain constant.

For a set of N images, we select several elements in each
scene and compute a set of values sampling all possible metameric
pairs of illuminant and reflectance spectra corresponding to the
pixel values of each patch. From these reflectance spectra, we
compute sensor responses. By matching the sensor responses, we
deduce the illuminants corresponding to the N images and we also
obtain an estimate of the reflectances of the selected objects. We
express all spectral quantities as sums of a limited numbers of
basis functions and use a linear image formation model. We con-
ducted experiments with synthetic and real images. Good results
for illuminant retrieval are observed whenever the images present
a sufficient variety of illuminants.

This article is structured as follows: in the next section we
present background information on color constancy, then we de-
scribe our approach in detail, report the results, and conclude the
article.
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Background

There are many approaches to color constancy, here we dis-
cuss the algorithms most closely related to our method. Several
methods were proposed to retrieve the illuminant in a scene us-
ing linear models for the reflectance and illuminant spectra. The
dimension of linear problems can be reduced by expressing the il-
luminant and reflectance spectra as weighted sums of basis func-
tions ([9], [2], [16]). Determining the spectra reduces to deter-
mining these weighting coefficients.

Buchsbaum assumes the average reflectance of a scene to
be constant to retrieve the illuminant [1]. In [7], Gershon et al.
modify this method by adding information about the properties
of surfaces likely to appear in a scene. The scene illuminant is
found by mapping scene color values onto an ideal material space
formed by the descriptors of “all” surface reflectances. In [14],
Maloney and Wandel assume the number of sensors to be superior
to the number of degrees of freedom of the reflectance descriptors.
In this framework, they retrieve the illuminant by inversion of a
linear model. If we apply this approach to the case of an RGB
camera, we have three sensors and can thus approximate the re-
flectances by a sum of only two functions, which is not accurate
enough. It has indeed been shown in [2] and [13] that most nat-
ural and man-made surfaces have reflectance spectra that can be
represented by a linear combination of 6 to 8 basis functions. In
[20], D’Zmura and Iverson present a two-stage-recovery bilinear
model for the retrieval of both illuminant and reflectance spectra.
They investigate the solvability condition of a model using sev-
eral surfaces imaged under different illuminants. They combine
the information on all surfaces viewed under all illuminants into
one system of linear equations. They first recover the reflectance
descriptors by inverting this linear system and then use the result-
ing descriptors to compute the illuminants. In our approach, we
solve in parallel several linear systems, one for each individual
surface viewed under each test illuminant. We force the result-
ing reflectance spectra to be equal, which allows us to deduce the
illuminants.

Other approaches using pairs of images of one scene under
different illuminants have been proposed. For example, the flash-
no flash method uses two images of one scene taken with and
without flash ([3], [12], and [17]). Knowing the flash spectra, the
authors can retrieve the non-flash illuminant. The chromagenic
method [6] offers a similar approach. A scene is imaged with and
without a colored filter placed in front of the camera. Knowing
the filter transmittance, the authors derive the illuminant of the
unfiltered scene among a set of test illuminants.

The main difference between our method and approaches
using pairs of redundant images such as the flash-no flash or
chromagenic approach is that we only use the redundancy of re-
flectances rather than information on the difference between two
images (the flash spectral power distribution in the flash-no flash
approach or the colored filter transmittance in the chromagenic
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approach). Another difference is the number of input images re-
quired to estimate the illuminants: these methods, when consid-
ering uniform illuminants, retrieve one illuminant using two im-
ages, an original and a modified image; whereas our method al-
lows retrieving N illuminants in N input images. Also, our input
images do not need to represent the same scene, but only to con-
tain several objects present in every scene. Moreover, we obtain
an estimate of the reflectance of these objects.
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Figure 1. When represented on a sphere, daylight illuminants can
be approximated by a quadratic function (dashed line). The 13 day-
light illuminants D40 to D100 are represented, from left to right, by
the x’.

Our approach

We express the daylight and reflectance spectra as weighted
sums of 3 and 8 basis functions, respectively. The daylight illu-
minants are approximated as

where £ = 1. & (A) = & and & are, respectively, the mean and
first two principal components of the standard CIE daylight illu-
minants D40 to D100. Using only three basis functions allows
us to represent any illuminant after normalization by a point on a
sphere. When plotting the CIE daylight illuminants D40 to D100,
we see that the points lie on a curve that can be approximated by
a quadratic function (see Figure 1). We can thus represent any
illuminant using only one parameter, the azimuthal angle 6. The
reflectances are expressed as

S = S o)
i=1

where the basis functions .#;(4) are obtained by principal com-
ponent analysis of the Munsell, MacBeth, and natural reflectance
spectra [21].
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Figure 2.  Left: Error E(6,,6,) as a function of the two azimuthal angles.
Right: Real illuminants (dashed lines) and retrieved illuminants (solid lines).

The reflectance descriptors are computed as
oc=M'p’ (€]

where p = (r,g,b) represents the mean pixel value of a patch in
the image, T represents the Moore-Penrose pseudo-inverse, and
the matrix M elements are given by my; = 3, EtestRy;, where

Erest(A) = E(A) + €265(A) + €385(A) is the test illuminant spec-
tral distribution. R (4 ) is the sensitivity of the kth sensor and .;
are the reflectance basis functions.

In order to retrieve the illuminants, we use a set of several
images of the same scene and select N, patches of uniform color
present in every image, hence having the same reflectance spec-
tra. We average the pixel values of each patch and by inverting
a linear image formation model we obtain 8- N), - N reflectance
descriptors corresponding to a set of N test illuminants, indexed
by their azimuthal angle 6, and N, patches. Rather than matching
reflectance spectra directly, we compute and compare, for each
patch, the corresponding sensor responses under illuminant D65.
We compute the sensor responses for each test illuminant Eeg (A )
and patch as

8
p(0)PS =Y Ri(A) Y, 0:.5(A)Epes(A), k=1,2,3 (2)
A i=1

For any illuminant angle combination ©; =
(61(k),0,(k),...,0n(k)), we can compute the correspond-
ing sensor responses. Testing all illuminant combinations
O = (01(k),0,(k),...,On(k)) by sampling 6;(k) is computation-
ally heavy as the number of iterations increases exponentially
with the number of images considered. Instead of testing all
illuminant combinations, we find the solution by gradient descent
on an error function reaching its minimum when the sensor
responses match under illuminant D65, or, indirectly, when the
reflectance spectra match.

According to our assumption, the reflectance spectra of each
patch S,(4) = Y% | 6,.7}(A) remain unchanged across the N im-
ages taken under N unknown illuminants.

We vary the test illuminants and compute the corresponding
reflectance spectra and sensor responses for each element in every
images. We force the test sensor responses to be equal. A simple
least square error function is used for computational simplicity.
The error function is thus defined as the Euclidean distance be-
tween the N - N, sensor responses corresponding to a combination
of N illuminants represented by Oy = (0;(k),0(k),...,On(k)).

©?2008 Society for Imaging Science and Technology
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Figure 3.  This figure shows the real non-daylight (blue dashed line) and
retrieved daylight illuminants (solid red line) of Fig 4

The error function is computed as
R D65 D65 214
E(k)=-—5[ 2 X X i, (O —pin (@] (3)

where the indices i and j run over the images and n;, runs over the
N, patches.

The N image illuminants corresponding to the N images sat-
isfy

@f“:n?ﬂEwD 4)

The minimum O™ = (/! o« ll") is found by gradient
descent on the error function (3). At each step, the angles 6;(k)
are updated in a way to minimize the error function. 6;(k+1) is
given by

E(6; (k) + A0) — E(6; (k) — AO)
AO

0i(k+1) = 6;(k) — af &)
The initial angles 6 corresponding to the N image illuminants are
initialized as random N angles laying on the curve shown in Fig-
ure 1.

This method also returns an estimate of the reflectance spec-
tra of the redundant image elements.

Results

We conducted experiments on both synthetic and real im-
ages. The synthetic images represent a MacBeth ColorChecker
built using Canon 350D sensor sensitivities and the 13 standard
CIE illuminant D40 to D100. We selected 6 patches as the con-
stant reflectance elements across the images. We ran experiments
using 2 to 4 synthetic images. The angle 6 indexing the illumi-
nants follows the curve formed by CIE standard illuminants, as
shown in Figure 1. It means that we not only test for the standard
illuminants, but for a continuum of illuminants ranging from D40
to D100.

The error is measured as the angle between the 3 dimensional
vectors representing the D65 reference and retrieved white points.
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llluminants Angular errors
L b Apr Apy
D40 D50 80 84
D40 D90 06 0.2
D40 D100 | 0.8 0.9
D65 D80 27 25
D65 D90 1.8 16
D65 D100 | 1.4 1.2
D80 D90 07 0.6
D80 D100 | 0.8 0.8

Table 1: Angular errors for several choices of two images, indi-
cated by their illuminants. We see that the angular errors can
become large when the illuminants are close.
llluminants Angular errors

I 14 I Ap;  Apy  Ags
D40 D50 D60 52 58 55
D40 D50 D80 20 17 18
D40 D50 D100 | 0.8 0.1 0.2
De5 D75 D85 0.1 02 0.2
Des D75 D100 | 1.0 1.0 0.8
D75 D80 D85 24 23 22
D80 D90 D100 | 1.3 13 1.2

Table 2: Angular errors for several choices of three images,
indicated by their illuminants. We see that the angular errors
can become large when the illuminants are close.

The angular error [8] is computed as

Xref . Xexp
_ _Xp6s " Xpes
s =uecos () ©
D65 D65

where Xpgs is the white point expressed in SRGB. A perturbation
of 1 is usually not noticeable, while an error up to 3 degree re-
mains generally acceptable for such data [6].

Using only two images allows to represent the error as a
function of two variables, 8; and 6,, indexing the illuminants.
The estimation of the illuminant is good when the image illumi-
nants are quite different. The error function has a strong minimum
and the angular error usually remains under 1 degree. When the
image illuminants are too similar, the error is sometimes larger
and the result can be poor. Figure 2 shows the results using two
images built using illuminants D40 and D90. The graph on the
left shows the error as a function of the angles 0, while the graph
on the right show the real (dashed line) and retrieved illuminants
(solid line). Table 1 reports some values of angular errors for var-
ious illuminant pairs. Each computation was run three times to
check for the consistency of the convergence. The direction of
the shifts are the same for both illuminants.

Using three or four images gives more robust results. How-
ever, when the illuminants are close, the estimation quality de-
creases. See Tables 2 and 3 for examples of angular errors in
sRGB for different combinations of illuminants using three and
four images, respectively. The amplitude and direction of the
shifts are the same for the illuminants, as it was also observed us-
ing two images. It suggests that we can exploit this constant shift
by considering it as an estimation bias. Having a large database
of images would ensure having a variety of illuminants and give
more robust results.



Figure 4. Row 1 shows uncorrected images and row 2 shows the corresponding corrected images. Illuminants are, from left to right, D65, A, TL83, and
TL84. The red rectangles indicate the reference elements used to white balance the images. The images are rendered to SRGB using a white point preserving

transform [4].

llluminants Angular errors

I b I Iy Api Apy  Apz Agy
D40 D50 Deo0 D70 23 20 22 22
D40 D50 D80 D90 08 1.1 10 038
D40 D50 D80 D100 | 21 19 20 1.8
D40 Deo D80 D100 | 09 07 05 03
D55 D65 D75 D95 3.1 32 3.1 2.8
D65 D75 D85 D95 3.0 31 3.1 2.6
D65 D75 D90 D100 | 26 26 23 21

D75 D80 D85 D90 08 07 06 04

Table 3: Angular errors for several choices of four images, in-
dicated by their illuminants. We see that the angular errors
can become large when the illuminants are close.

We also ran experiments using four real images taken with
a Canon 350D camera in a GTI Color Matcher CMB2080 light-
booth with four different illuminants: daylight D65, incandescent
A, and two fluorescent illuminants TL83 and TL84. We took the 6
elements in the scene as reference reflectances across the images.
Figure 6 shows the images before (first row) and after (second
row) color correction using our method. The red rectangles indi-
cate the objects used as references.

In this case, we are approximating non-daylight illuminants
with daylight illuminants. We cannot retrieve the actual illumi-
nant spectra using daylight illuminant basis functions. For fluo-
rescent illuminants, the actual and retrieved spectra will be very
different (see Figure 3). However, the retrieved daylight illumi-
nants can be used to white balance the images, as shown in Fig-
ure 4. The corresponding angular errors are, from left to right,
Apy =5.4°, Apy =3.7°, Ap; = 13.4°, and A@py = 9.7°. The
second image, while having the lowest angular error, has a color
cast too important to be correctly white balanced using a global
method. Illuminant A emits very little in the short wavelengths.
Scenes taken under that illuminant exhibit a deficiency in the blue
channel often impossible to correct for.

While the result is visually satistying, the convergence of the
gradient descent depends on the initial conditions and sometimes
converges to an incoherent result. For this particular set of images,
there are two distinct solutions, and only one is acceptable. This
effect was also observed on synthetic images built with various
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Figure 5. This figure shows the illuminants retrieved in the images of Fig 6

real and synthetic, daylight and fluorescent illuminants, showing
that this is not due to the use of real images. When the illuminants
are far from daylight illuminants, the algorithm does not converge
to a satisfying solution for all initial conditions, probably due to
the presence of multiple minima.

We also ran experiments using a set of three real images
taken with a Canon 350D camera under real, unknown daylight
illuminants. The images were taken, respectively, at 12.45 pm, 5
pm, and 8.15 pm late June. The algorithm was run several times
for slightly different choices of reference patches and converged
each time to the same result. Figure 5 shows the illuminants re-
trieved in the images shown in Figure 6. Ten elements, displayed
in the image, were selected as reference reflectances and used to
retrieved the illuminants. The left image has a reddish color cast
and the right image has a bluish color cast, corresponding to the
retrieved illuminants. The corresponding illuminant spectra max-
imum shift to shorter wavelengths.

Our technique is designed to be applied to a fixed location
camera. In this case, using a set of images covering a sufficient
range of illuminants, we can compute the reflectance spectra and
the corresponding sensor responses of the static objects in the
scene and use them as references. For each new image, we can
extract the pixel values of the reference objects, whose positions
are known, and run our algorithm using the previously computed
reference reflectances.

©?2008 Society for Imaging Science and Technology



Figure 6. This figure shows uncorrected images. The red rectangles indicate the reference elements used to retrieve the illuminants, shown in Fig 5. The

images are rendered to sSRGB using a white point preserving transform [4].

Conclusion

We present an approach to solve for color constancy in im-
ages taken with fixed location cameras. Such images, though hav-
ing different dynamic contents and being imaged under changing
illuminants, contain several static objects in the background. We
use a set of images containing redundant elements, hence having
the same reflectance spectra, to retrieve the illuminant in each im-
age of the set. The problem is solved by gradient descent. We
minimize the distance between test sensor responses correspond-
ing to the static objects present in every scene. We demonstrated
the feasibility of our method on both synthetic and real images.
The method will be improved by modifying the gradient descent
computation, for example by using an adaptive step in the illu-
minant angle update. The quality and rapidity of the convergence
should improve. While the method is designed to retrieve daylight
illuminants, it also allows to white balance images taken under
non-daylight illuminants. However, the convergence is not always
guaranteed. The convergence conditions will be studied in details
in order to determine the reliability of the method for the white-
balancing of images taken under non-daylight illuminants. The
method shows good results whenever the set of images contains a
sufficient variety of illuminants.
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