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Abstract
Goodness of the reflectance prediction in multi-angle mea-

surement of metallic and pearlescent samples mainly depends on
the viewing and illumination directions. This study focuses on
predicting the reflectance for all viewing directions from the re-
flectance for few number of selected best primary angles. The
experiment was done on metallic and pearlescent samples. The
principle component analysis and wiener estimation method were
used to find best primary angles and predict the reflectance for all
viewing angles. It has been found that wiener estimation method
with higher polynomial order of Principle Components (PC) re-
duces prediction error significantly. Reflectance for only three
best primary angles are sufficient to predict reflectance for all
viewing angles between 125◦ to −35◦ in aspecular directions, if
the estimation function was calculated from the training set of
similar types. Similarly this experiment shows that reflectance for
only five best primary angles are sufficient to predict reflectance
for all viewing angles independent of the sample types.
Keywords: Reflectance, Pearlescent, Metallic, PCA, Wiener Esti-
mation, CMC(l:c).

Introduction
The aim of this study is to estimate the reflectance for large

number of viewing directions from the reflectance for few number
of primary angles using wiener estimation [8] on the top of Princi-
ple component analysis (PCA)[2]. The experiment was conducted
on metallic samples coated with PVDF with flakes, Metallic sam-
ples coated with PVDF and Polyster and Pearlescent samples. In-
tegrating sphere and 45◦/0◦ geometry have been used tradition-
ally for most of paints that absorb incident light and the rest is
diffusely scattered as a result perceived color is independent of
measuring geometry including the illumination and viewing an-
gles. In contrary to this, the brightness of the metallic coating
depends on the viewing angles but is independent of the illumi-
nation angles and in pearl interference pigments or pearlescent
coating, perceived chroma, hue and brightness depend on both il-
lumination and viewing angles [4]. In multi-angle measurement,
measured color is simply a function of the angle away from spec-
ular [6]. So, multi-angle measurement is essential for metallic and
pearlescent samples to assess the reflectance accurately in differ-
ent viewing angles. The understanding of reflectance characteris-
tics in multi-angle of these type of specular and glossy sample is
useful for the quality assessment, sample characterization in terms

of color and glossiness and is also useful in the complex color ren-
dering process in computer graphics application. The measure-
ment of reflectance for all viewing angles and for different illumi-
nation angles is not the feasible solution from the practical point
of view since it costs more time and larger memory space. To
avoid these situation, few number of primary angles should be se-
lected in the way less color difference during prediction could be
achieved. The primary angles and viewing angles are defined as
aspecular angles. Aspecular angle is 0◦ in the specular direction
and increases towards the normal of the surface from specular di-
rection and decreases in the opposite direction. The measurement
geometry has been shown in Figure 1.

There are different proposals for primary angles depending
on the type of materials, estimation process, and color difference
and spectral reflectance difference. Three primary angles, one
near specular at 15◦, one far from specular at 110◦ and the third
in between at 45◦ for the measurement of metallic surface were
proposed [6]. Similarly 20◦, 45◦ and 70◦ were used to find more
better result than previous geometry [5]. It was tested with both
metallic and pearlescent samples. Both methods used polynomial
modeling approach as the estimation method. Similarly combina-
tion of primary angles 25◦, 45◦ and 110◦ gave the highest corre-
lation with visual assessment for the metallic paint films [11].

The ASTM recommends the aspecular angles 15◦, 45◦ and
110◦ and DIN recommends the aspecular angles of 25◦, 45◦, and
75◦ for the metallic samples [1]. Aspecular angles of 15◦, 35◦,
45◦, 70◦ and 85◦ viewing angles for illumination direction of 15◦,
45◦ and 65◦ have been proposed for pearlescent pigment [4]. Sim-
ilarly Aspecular angles of 10◦, 18◦, 28◦, 40◦ and 90◦ viewing an-
gles for illumination of 60◦ have been proposed for all type of
painted surface [3]. Similarly the best angles can selected from
the local minima and maxima points produced by the reconstruc-
tion error of principle component analysis [10]. These methods
give quite good solution but not the optimal one.

In this study we selected best primary angles according to
average minimum color difference of CMC(2:1) as prediction er-
ror function. We applied the wiener estimation method to the
linear relationship between principle components of reflectance
for primary angles and reflectance for all viewing angles. As
the order of polynomial of principle components were increased,
the better prediction results were achieved. Our result showed
that up to fifth order of polynomial of principle components im-
proves the prediction result significantly. In addition to that our
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result showed that reflectance for the five best primary angles
are sufficient to predict the reflectance in all viewing angles be-
tween 125◦ to −35◦ in aspecular direction using the wiener es-
timation function from the training set containing metallic and
pearlescent samples. The reflectance for three best primary an-
gles are sufficient to predict reflectance for mentioned viewing
angles for each type of samples, in the case if the estimation
function was calculated from the training set containing simi-
lar type of samples. The three primary angles found with best
combination are [115◦ 25◦ − 30◦], [75◦ 20◦ − 10◦] and
[70◦ 20◦ − 15◦] for metallic coated with PVDF with flake,
metallic coated with PVDF and polyster and pearlescent respec-
tively. The five primary angles found with best combination inde-
pendent of sample types are [120◦ 70◦ 35◦ 10◦ −25◦].

Figure 1. Measurement geometry, Angles shown across the viewing direc-

tions are aspecular angles. Aspecular angle is 0◦ in specular direction.

Measurement
The intensity signal (S) of the samples at different angles

were calculated using Hamamatsu Photenic Multichannel Ana-
lyzer within the visible range of 380 nm to 780 nm with 5 nm step
under the light source halogen lamp with D65 filter. The position
of the light source was set at 45◦ from the surface for all viewing
directions. The reflectance of the samples was calculated using
Eq. (1).

Rx(λ ,θ) =
Sx(λ ,θ)−Sk(λ ,θ)
Sw(λ ,θ)−Sk(λ ,θ)

Rw(λ ,θ) (1)

Where λ and θ are the wavelengths and viewing angles respec-
tively. Sx, Sw and Sk are the measured signals from samples, stan-
dard white and dark respectively. Rx and Rw are the reflectance
for the sample and calibrated value for a white standard. The
reflectance of the samples may exceed value one in specular di-
rection since the sample is more glossy and specular than that of
used white reference. Altogether fortyfive different samples were
used in training set. Out of fortyfive samples, twelve samples
were pearlescent, twenty one samples were metallic coated with
Polyvinylidene Fluoride (PVDF) with flakes and six samples were
metallic coated with polyester and remaining samples were metal-
lic coated with PVDF. All these samples were divided in three
classes a) Pearlescent b) Metallic with PVDF coating with mica
c) Metalic coated with Polyster and PVDF. The classification was
made according to the distribution of reflectance across viewing
directions. The reflectance characteristics of these three types of
samples are shown in Figure. 2. X − axis shows the wavelength,
Y −axis shows the aspecular viewing direction and Z−axis is the
reflectance value.

The reflectance measured for each sample in 123 different
viewing angles [125◦ to 100◦ 80◦ to 10◦ −10◦ to −35◦] in as-

pecular direction with the sampling of one degree were used as
training set as shown in Figure 1. The reflectance measured be-
tween aspecualr angles 135◦ to 124◦ and −36◦ to −45◦ produces
the noise due to low reflectance value near to zero, sometimes
goes to negative value so those angles were not considered for
the measurement . Similarly reflectance between aspeucular an-
gles 101◦ to 79◦ could not be measured since camera obscures
the light source and produces the shadow in the surrounding an-
gles. In the proximity of specular directions between 9◦ to −9◦
the reflectance gets saturated for large number of samples so the
reflectance for these angles were not considered for the measure-
ment.

Principle Component of Primary Reflectance
The idea of PCA is to reduce the dimensionality of a data

set, consisting of large number of interrelated variables, while re-
taining as much as possible variations present in the data set. This
is achieved by transforming to a new set of uncorrelated variables
called the principle components (PC). The PC are ordered so that
first few dimension retains most of the variations present in all
of the original variables [2]. Here PCA gives the linear relation
of reflectance for all viewing directions to the principle compo-
nents of reflectance for best primary angles. This linear relation
has been utilized to find Wiener estimation function for the higher
polynomial order of PC.

The first step of PCA is to have original data preferably mean
subtracted data. In this experiment, the data or training set is col-
lection of reflectance of different samples in all viewing angles.
The reflectance of training set for all different viewing angles of
all different samples is represented in 2D matrix form in Eq. (2).

R =

⎡
⎢⎢⎣

R1(θ1) .. .. Rm(θ1)
: : : :
: : : :

R1(θn) .. .. Rm(θn)

⎤
⎥⎥⎦ (2)

If the matrix R is defined for each wavelength separately, the size
of each R is r× c, where r is number of viewing angles n and c is
number of samples m. Similarly if the single matrix R is defined
for all wavelength at a time, Ri(θ j) is the reflectance value in all
wavelengths of ith sample at jth viewing angle and is represented
as Ri(θ j) =

[
R380

i (θ j)−−−R780
i (θ j)

]
. Then the size of matrix

R is r× c, where r is number of viewing angles and c = m× k, m
is number of samples and k is number of wavelengths. The corre-
lation matrix K of the data set R is calculated as
K = 1

c−1 RRT .
Here []T denotes the transpose of the matrix. If R is mean sub-

Figure 2. Reflectance characteristics of metallic with PVDF coating and

mica (gray color), pearl sample and metallic with polyester coating (left to

right)
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tracted data, the correlation matrix K will be exactly covariance
matrix. For the correlation matrix K, the eigen equation Kν = σν
gets satisfied. ν and σ are eigen vectors and eigen values respec-
tively of size n×n. The eigen value σ is a diagonal matrix. The
eigen vectors are the orthogonal matrix. The eigen vectors corre-
sponding to p largest eigen values are orthogonal basis function
B. The size of basis matrix B is n× p. The number of eigen vec-
tors as basis functions were chosen according to the information
content termed as fidelity ratio. The fidelity ratio f for the first p
eigen vectors are calculated as the ratio of the sum of first p eigen
values to the sum of total eigen values as shown in Eq. (3).

f =

p

∑
i=1

σi

n

∑
i=1

σi

100 (3)

During the data reduction process principle component P is cal-
culated as in Eq. (4).

P = BT R (4)

For an orthogonal basis function B , the elements of P are opti-
mally mutually uncorrelated. The basis function represented in
matrix form is:

B =

⎡
⎢⎢⎣

ν1(θ1) .. .. νp(θ1)
: .. .. :
: .. .. :

ν1(θn) .. .. νp(θn)

⎤
⎥⎥⎦

The reconstruction of reflectance is calculated from Eq. (5).

R ≈ R̃ = B P (5)

Reflectance for all viewing angles have been estimated by the lin-
ear combination of first p principle components as shown in Eq.
(5). But the goal is to predict the reflectance for all viewing angles
from the reflectance for p number of primary angles of the test set
from the known basis function B derived from training set. Here
the main problem is , we do not know the principle component Pt

of the test reflectance for primary angles. The principle compo-
nent Pt is solved as shown in Eq. (6) using test reflectance for pri-
mary angles and basis function corresponding to p angles. Here
the primary angles are defined as α = (α1, ......,αp) where set of
primary angles α should be the element of set of total viewing
angles θ .

Pt =

⎡
⎢⎢⎣

ν1(α1) . νp(α1)
: . :
: . :
ν1(αp) . νp(αp)

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

R1(α1)
:
:

Rp(αp)

⎤
⎥⎥⎦ (6)

Here Ri(α j) is
[
R380

i (α j)−−−R780
i (α j)

]
, if the prediction is

done by using the basis function calculated for training set matrix
R using all wavelength at a time. Otherwise Ri(α j) is reflectance
value for each wavelength and Pt should be calculated for each
wavelength. i and j indicate the index of principle component
and primary angles respectively. The prediction of reflectance of
test sample for all viewing angle is achieved as shown in Eq. (7)

R ≈ R̃ = B Pt (7)

Wiener Estimation
The wiener estimation method is traditionally used to esti-

mate the data sets in larger dimensional space from lower dimen-
sional space. In this study, this method has been employed to es-
timate reflectance for all viewing angles from the reflectance for
few number of selected primary viewing angles. The wiener es-
timation method is quite simple and provides accurate estimation
[3].

The Wiener estimation rule to estimate the reflectance R for
all viewing angles from reflectance r for few primary angles with
mapping function G is shown in (8).

R = GP (8)

Here P is principle component calculated for reflectance r as
shown in Eq. (6). In Eq. (8), the size of R is n×m, size of G
is n× p and size of P is p×m. Here n is number of total view-
ing angles, m is number of samples, and p is number of primary
angles. If single calculation was done for all wavelengths, then
new m is product of number of samples m and number of wave-
lengths k, m = m ∗ k. For the first order of polynomial Eq. (8)
is exactly the same as Eq. (5). The number of primary angles
were selected according to fidelity value calculated from PCA.
The fidelity value chosen was ≥ 99.9 percent. The purpose of the
estimation matrix G is to minimize the square error between orig-
inal R and estimated R̃ [8].
e =| R− R̃ |−→ min
The estimation matrix G is explicitly represented in Eq. (9) [8].

G = CRPC−1
PP (9)

The notation []−1 indicates the inverse of the matrix. Matrix CRP
is cross correlation between matrices R and P. Matrix CPP is auto
correlation of matrix P. The CRP and CPP are calculated as shown
in Eq. (10).

CRP = RPT

m−1 , CPP = PPT

m−1 (10)

Here notation []T denotes the transpose of matrix. After calculat-
ing CRP and CPP, the estimation matrix G is calculated from Eq.
(9). After having estimation function G calculated from training
set, the estimation of reflectance R̃ for all viewing angles from
principle components P of reflectance for particular primary an-
gles are achieved from Eq. (8).

In this experiment, we tested our result using first order
polynomial to fifth order polynomial of principle components.
The predicted results were improved considerably as the order
of polynomial increases. For the first order polynomial of princi-
ple component P of reflectance r for three primary angles α1,
α2 and α3 is arranged as P1 = [Pα1 Pα2 Pα3]. In the sec-
ond order polynomial for three primary angles we appended the
term P2 = [Pα1 ∗Pα1 Pα1 ∗Pα2 Pα1 ∗Pα3 Pα2 ∗Pα2 Pα2 ∗
Pα3 Pα3 ∗ Pα3]. Similarly the third order polynomial consists
the term P3 = [Pα1 ∗ Pα1 ∗ Pα1 Pα1 ∗ Pα1 ∗ Pα2 Pα1 ∗ Pα1 ∗
Pα3 Pα1 ∗Pα2 ∗Pα2 Pα1 ∗Pα1 ∗Pα3 Pα1 ∗Pα2 ∗Pα2 Pα1 ∗
Pα2 ∗ Pα3 Pα1 ∗ Pα3 ∗ Pα3 Pα2 ∗ Pα2 ∗ Pα2 Pα2 ∗ Pα2 ∗
Pα3 Pα2 ∗ Pα3 ∗ Pα3 Pα3 ∗ Pα3 ∗ Pα3]. So for the second or-
der polynomial P = [P1 P2] and for the third order polynomial
P = [P1 P2 P3] are used to calculate estimation function. Similarly
P can be arranged to higher order of polynomials for more num-
ber of primary angles. From Eq. (9) the estimation function G is
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derived. As the order of polynomial increases, the size of estima-
tion function increases accordingly. The prediction results up to
fifth order polynomial improves significantly.

Error Measures
In this study, we used root-mean-square error (RMSE) to

check the goodness of predicted reflectance. The color difference
formula ΔE from the society of Dyers and Colourists Color Mea-
surement Committee CMC(l:c) was used to measure the color dif-
ference of the predicted result from the measured one. The RMSE
was calculated as shown in Eq. (11).

RMSE =

√√√√√
n

∑
i=1

(Rm(i)−Rp(i))2

n
(11)

In Eq. (11) Rm and Rp are the measured and predicted reflectance
factors at the same angle and n is the number of wavelengths.

To calculate ΔE for CMC(l:c), the luminance L∗ and chromi-
nance a∗ and b∗ were calculated, then chroma C∗

ab and hue h∗ab
were derived using International Commission on Illumination
CIE 1976 L∗a∗b∗ system with standard day light source CIE D65
and 1931 standard observer CIE 2◦. Then the color difference was
calculated using Eq. (12).

ΔECMC(l : c)=

√(
L∗

m −L∗
p

lSL

)2

+
(

C∗
m −C∗

p

cSc

)2

+
(

h∗m −h∗p
SH

)2

(12)

In Eq. (12) the subscript m and p are the notations for the mea-
sured and predicted ones. l and c are the tolerances applied re-
spectively in difference in lightness and chroma relative to hue
difference. The c is usually smaller than l because human per-
ceives smaller shifts in chroma than in lightness. In our experi-
ment we have choosed ratio l:c equal to 2:1. The ΔECMC(l : c) is
based on the optimization method to convert non uniform ellip-
soidal in LAB space to more uniform spherical in LCH space. In
Eq. (12) SL, SC and SH are the relative attribute difference for lu-
minance , chroma and hue calculated from the standard observer
[9].

Results
The samples in the training sets were categorized in three

groups a) PVDF coated metallic with flakes (metallic 1) b) PVDF
and Polyester coated metallic (metallic 2) c) Pearlescent. The fi-
delity ratios calculated for each group and altogether have been
listed in Table 1. The fidelity ratio suggests that only three prin-
ciple components are enough to retain ≥ 99.9 percent of informa-
tion, if the reconstruction was done from the training set contain-
ing the same group of samples. Similarly five principle compo-
nents are enough to retain ≥ 99.9 percent of information, if the re-
construction was done from the training set containing all groups
of samples. On that basis three best primary angles are enough to
predict reflectance in all viewing angles for each type of samples
using the estimation function calculated from the training set con-
taining same group of samples. Similarly five best primary angles
are enough to predict reflectance independent of the type of sam-
ples. Figure 4 shows the prediction error for different types of
samples calculated from the basis function independent of sample
types. There are methods to find the primary angles from the min-
imum and maximum points of principle component vector [3] and

from the local maximum and minimum points of the reconstruc-
tion error. However these methods do not provide the optimal
solution. The sequential backward selection method [12] can be

used to find the primary angles and it requires the (Nn− n(n−1)
2 )

number of operations to choose n best primary angles from N set
of angles as a sub optimal technique. The full search requires
the N!

(N−n)!n! number of operations. Here []! is factorial. As the
number of viewing angles and number of required primary angles
increase, the full search method becomes more inconvenient due
to time complexity. In this study , as the first step we reduced the
viewing angles from total 123 angles to 10 best viewing angles
using sequential backward selection method and applied the full
search method to find best primary angles among 10 best angles.
The best three primary angles, and prediction error for metallic 1,
metallic 2 and pearlescent have been shown in Table 4. The results
in Table 4 were obtained using the training set of the same group
of samples and wiener estimation of order five. Table 2 shows
the 1st to 5th best angles and prediction error. The results in Ta-
ble 2 were calculated using the training set containing all types
(Metallic 1, Metallic 2 and Pearlescent) of samples using wiener
estimation with polynomial order 5. Figure 5 shows the lumi-
nance, chroma and hue of the measured and predicted reflectance
using five best primary angles and wiener estimation with order
5.

The prediction of the reflectance in all viewing angles was
done by using wiener estimation method with polynomial or-
der five of the principle components of reflectance for primary
viewing angles. It was found that higher order of polynomial of
principle components decreased the prediction error significantly.
There was no significant decrement of prediction error after poly-
nomial order five as shown in Figure 3. As a result polynomial or-
der 5 is suitable for wiener estimation in multi-angle reflectance
prediction. Table 3 shows the gradual improvement of predic-
tion error due to increasing order of polynomial. When the or-
der of polynomial is one, it is almost the same result predicted
by linear PCA. The two-way analysis of variance (ANOVA) with
factors viewing angles and sample type (Metallic 1, Metallic 2
and pearlescent) were computed. The criterion variables are mean
values of color differences between measured reflectance and pre-
dicted reflectance using five best primary angles. The results of
ANOVA in Table 5 show that the interaction between viewing
angle and sample lies below one percent significance probabil-
ity, that means reflectance for the five best primary angles can be
used to predict reflectance in all viewing angles independent of
the sample types.

Conclusions
The wiener estimation based reflectance prediction in multi-

angle measurement for metallic and pearlescent samples has been
proposed. The wiener estimation was applied to the linear rela-
tionship provided by principle component analysis. The wiener
estimation method up to the fifth order of polynomial of principle
components has improved prediction results significantly. The ex-
periment shows that five best primary angles are sufficient to pre-
dict reflectance in all viewing angles independent of the types of
samples. Additionally it has been found that only three best pri-
mary angles are sufficient to predict reflectance for all viewing
angles using the estimation function calculated from the similar
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type of samples. As a future work, the number of samples will be
increased in training set containing wide range of material types,
colors and gloss value so that more stable viewing angles could
be achieved.

References
[1] Roy S. Berns, Billmeyer and Saltzman’s Principles of Color Technol-

ogy, John Wiley & Sons, VA, 2000, pg.75-105.
[2] Jolliffe I.T., Principle Component Analysis, Springer series of statis-

tics, Springer, 2002.
[3] Atsushi Takagi, Akihiro Watanabe and Grorw Baba, Prediction of

Spectral Reflectance Factor Distribution of Automotive Paint Fin-
ishes, Color Res. and Appl., 30, 4 (2005).

[4] Maria E. Nadal and Edward A. Early, Color Measurements for
Pearlescent Coatings, Color Res. and Appl., 29, 1 (2004).

[5] Allan B.j.Rodrigues and Troy, Measurement of Metallic and Pearles-
cent Colors, DIE FARBE 37 (1990), pg. 65-78

[6] Alman D. H., Directional color measurement of metallic flake fin-
ishes. proc. ISCC Williamsburg Conference on Appearence 1987, pg.
53

[7] H. Haneishi, T. Hasegawa and A. Hosoi, System Design for Accu-
rately Estimating the Spectral Reflectance of Art paintings, Applied
Optics 39 (2000), pg. 6621-6632.

[8] P. Stiggel, K. Miyata and M. Hauta-Kasari, Wiener Estimation
Method in Estimating of Spectral Reflectance from RGB images, Pat-
tern Recognition and Image Analysis 17 (2007), pg. 233-242.

[9] K J Smith, Colour-order systems, colour spaces, colour difference
anc colour scales, Colour Physics for Industry, edition 2, edited by
Roderick McDonald, 1997, pg.151-155.

[10] Koirala, P., Hauta-Kasari, M., Hiltunen, J. and Parkkinen, J., Ac-
curate reflectance prediction in multi-angle measurement. CGIV
2008/MCS’08, 4th European Conference on Colour in Graphics,
Imaging, and Vision, Terrassa, Spain, June 9-13, 2008, pp.489-493.

[11] Saris H.J.A., R.J.B. Gottenbos and H.van Houewelinegen, Corre-
lation between visual and instrumental color differences of metallic
paint films. Color Res. Appl. 15 (1990), pg. 200-205.

[12] Sergios Theodoridis and Konstantinos Koutroumbas,Pattern Recog-
nition, Third Edition, Academic Press, Inc. , 2006.

Author Biography
Pesal Koirala is a PhD student in the Department of Computer Sci-

ence and Statistics at the University of Joensuu, Finland. He received his
MSc in Computer Science from the University of Joensuu in 2006 and BE
in Computer Engineering from the Kathmandu University, Nepal in 2001.
His research interest includes spectral imaging and pattern recognition.

Table 1. Fidelity ratio calculated from training set containing
only Metallic with PVDF with mica (Metallic 1), Metallic with
PVDF and Polyster (Metallic 2), Pearlescent and all types of
samples (All).

PC Metallic 1 Metallic 2 Pearlescent All
1st 98.82 96.14 84.56 89.43

1st −2nd 99.77 99.76 99.85 98.48
1st −3nd 99.90 99.97 99.93 99.45
1st −4nd 99.95 99.98 99.98 99.80
1st −5nd 99.97 99.99 99.99 99.89

Figure 3. Prediction error by wiener estimation method using first to fifth

order of polynomial using five primary angles.

Figure 4. Prediction error for different samples by wiener estimation method

using fifth order of polynomial using five primary angles.

Table 2. Prediction result Mean values (μ) and Maximum val-
ues (m) of color difference ((ΔE CMC(2 : 1)) and the Root mean
square errors (RMSE) according to best angles for all type of
samples.

Best angles
ΔE CMC(2 : 1) RMSE

μ m μ m

40◦ 6.863 12.287 0.133 0.442
70◦20◦ 3.089 10.688 0.040 0.212
70◦25◦ −20◦ 1.425 5.262 0.020 0.116
70◦30◦15◦ −20◦ 0.762 3.587 0.009 0.045
120◦70◦35◦10◦ −25◦ 0.309 1.177 0.004 0.022

Table 3. Prediction from five best primary angles using
wiener estimation with first to fifth order of polynomials of PC,
mean values (μ) and maximum values (m) of color difference
(ΔE CMC(2 : 1)), and Root mean square errors (RMSE).

Order
ΔE CMC(2 : 1) RMSE

μ m μ m

1 1.029 4.522 0.617 0.099
2 0.695 3.579 0.008 0.047
3 0.389 1.670 0.005 0.028
4 0.310 1.520 0.004 0.020
5 0.277 1.427 0.003 0.018
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Figure 5. Predicted and measured Luminance, Chroma and Hue (top to bottom ) of Metallic 1, Metallic 2 and Pearlescent samples (left to right).

Table 4. Prediction from three best primary angles using wiener estimation with fifth order of polynomials of PC, mean values (μ)
and maximum values (m) of color difference (ΔE CMC(2 : 1)), and Root mean square errors (RMSE).

Sample type Primary angles
ΔE CMC(2 : 1) RMSE

μ m μ m

Metallic 1 115◦ 25◦ −30◦ 0.458 1.515 0.008 0.038
Metallic 2 75◦ 20◦ −10◦ 0.384 1.263 0.005 0.012

Pearlescent 70◦ 20◦ −15◦ 0.498 2.902 0.007 0.023

Table 5. Anova result Comparison verification between all and classified.X1 represents the sample type and X2 represents the
viewing angles.

Source Sum of Squares Degree of freedom Mean Squares F-value P-value
X1 73.697 26 2.835 25.09 0
X2 1.359 2 0.680 6.02 0.003

X1 ∗X2 13.29 52 0.256 2.26 0
Error 103.73 918 0.113
Total 206.932 998
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