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Abstract 
Color-based object indexing and matching is attractive since 

color is an efficient visual cue for characterizing an object. 
However, different illuminations will bring in color deformation of 
objects so as to degrade the performance of recognition. In order 
to circumvent this confounding influence, we present an effective 
color invariant descriptor that is considerably insensitive to the 
variations of light conditions, object geometric transformation, 
and image blur level.  The descriptor is a feature vector consisting 
of several two dimensional normalized moment invariants of color 
pixels’ distribution with different orders in a new color coordinate. 
The new color coordinate is introduced on the diagonal-offset 
model. The experiments on real image databases in terms of 
recognition rate show that our method is robust and performs very 
well under various situations.   
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Introduction 

Color has proven to be simple, straightforward information 
for object matching. Swain and Ballard [1] developed an indexing 
scheme that recognizes the object using color histogram 
intersections. Although this method is insensitive to geometric 
transformation, the performance will degrade when light 
conditions change, because color information from any imaging 
device depends on not only the characteristics of the object but also 
the spectral power distribution of the light incident on it. 

A number of techniques for representing color invariant 
descriptors have been reported in the literatures [2-5]. Funt and 
Finlayson presented an algorithm, named color constancy color 
indexing (CCCI), by matching histogram of color ratios between 
neighboring pixels[2]. Gevers and Smeulders [3] extend CCCI 
technique to account for the effect of both illumination color and 
shading. Adjeroh and Lee [4] proposed another color ratio based 
feature by integrating the variation between any pixel and its 
neighbors. Although these methods have been shown to be superior 
to Swain's method in the presence of illumination change, they 
work along the image edges while ignoring the wealthy 
information from the original image itself, so they are too sensitive 
to image quality. For darker regions, the derivatives are easily 
affected by noises; for those blurred or uniform regions, the 
derivatives are close to 0. To address this problem, Healey et al [5] 
gave out an object recognition algorithm using high-order color 
distribution information. But this approach did not consider the 
change in color intensity due to light direction. 

In this paper, to remove the confounding effect due to various 
illumination conditions, changing object geometry and different 
image blur levels, we propose a novel descriptor in a new color 
coordinate system introduced on the diagonal-offset model. The 

proposed descriptor is a feature vector that includes several two 
dimensional normalized moment variants with different orders, 
each summarizing the shape of color distribution of the image.  
Experiments using two real image databases show that our scheme 
is robust and works very well under various situations. 
 
Central Chromaticity Space 
  According to the Lambertian reflectance model, the 

image
Tf  = (R, G,B) can be computed as follows: 

( ) ( ) ( , ) ( )f X e s X c d
ω

σ λ λ λ λ= ∫  (1) 

where X  is the spatial coordinate, λ  is wavelength and ω  

represents the visible spectrum. ( )e λ  is spectral power 

distribution of light source, ( , )s X λ  is the surface reflectance, 

and )(λc is the camera sensitivity function.  σ  is the shading 

factor depending on the angular between the normal of surface 
patch and illumination direction. Because the Lambertian model is 
much more ideal, Shafer proposed to add a “diffuse” light term to 
this model [6]. The diffuse light has a lower intensity and is 
coming from all directions in an equal amount: 

( ) ( ) ( , ) ( ) ( ) ( )f X e s X c d c d
ω ω

σ λ λ λ λ α λ λ λ= +∫ ∫  
(2) 

where ( )α λ  is the term that models the diffuse light.  

The aim of many color constancy applications is to transform 

all colors of the input image 1f , taken under a light source 1e , to 

colors as they would appear as 2f  under a reference light 2e  . 

This transformation can be in the form of a diagonal model or Von 
Kries model [6]. 

1,2
1 2f D f=  (3) 

where 
1,2D is a diagonal matrix. In the ( , , )TR G B  color space, 

the transformation can be written as: 
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Finlayson et al. further proposed a diagonal-offset model by adding 
an offset term [7]. In this model, the illumination color changes can 
be considered as comprising scaling as well as an offset for each 
color band. It has advantages over the commonly used one in 
which it takes diffuse lighting into account, so it is more general.  
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From this diagonal-offset model, we define a new color coordinate 
system, named Central Color Coordinate System, or CCS, as 
follows: 
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=  (6) 

[ ]R G B are the average pixel value of the whole image in 

R,G,B channel separately. Therefore, the offset term in the 
diagonal-offset model can be obviously removed. And the color 
change conforms to the diagonal transformation model.  
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Illuminant Independent Descriptor 

The u v+  order of image f  in this new central color 

coordinate system, uvM , is defined as follows: 

( , )u v
uvM r g r g drdgρ= ∫∫   

(8) 

The density function ( , )r gρ  is joint probability distribution in 

the CCS of image f. 

( , )( , ) Num r gr g
pixNum

ρ =
 

(9) 

The pixNum  is image size  of f , while the ( , )Num r g  

represented the total number of pixels with value of ( , )Tr g in the 

image.  
The moment is invariant under translation. According to the 

Eq. (7)-(9), the relationship between 1( )uvM  , the chromatic 

moment under illumination 1e ,  and  2( )uvM  , the chromatic 

moment under reference light 2e , can be obtained as:  
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where 
' 0

0 '
α

β
 is Jacobi Determinant. To eliminate the scale 

factors describing the light color change, ', 'α β , the normalized 

moment invariant is defined as: 
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Now uvη  stays constant across a change of illumination.  

The normalized moment invariant of different orders, u+v, 
describe distinct shape features of image color distributions. 
Therefore their combination can serve as a robust descriptor of the 
image. According to two important criteria given out in [8], 7 
normalized moment invariants are used in this paper.  

01 10 11 02 20 12 21[ , , , , , , ]J η η η η η η η=  (12) 

 
Experiments 
    To evaluate the performance of the proposed algorithms, object 
recognition experiments based on two images databases are 
conducted in terms of its robustness to three conditions: light 
source change, geometric affine transformation and image 
instability.   
Object recognition is performed by means of k-nearest neighbor 
(KNN) classification, and performance is assessed with reference 

to recognition ratio ( RR ). 

100%CorrectRR
All

= ×  (13) 

Where All  represents total number of the images used for object 

recognition. Correct  is total number of the images that are 

recognized correctly. The k in KNN means the first k  matches in 

the increasing sorted of matching distance values. If k  is set to be 
1, the image from first rank is selected as matching scene; 
otherwise, the most numerously matched object will be selected. In 

this paper, we make k  to be 1,3,5,7,9 respectively. We also 

compute the average RR  over the performance of these five 

different k  values. 
The first data set is based on the 321 images of 30 scenes 

under 11 varying illuminations [10]. Some of the images are 
excluded because they are very dark and could bias the 
performance of the tested algorithm.  The resulting data set 
consists of 172 images of 17 scenes. The example images of same 
white paper under 3 varying illumination, white, red and blue 
respectively, are shown in figure 1. Since the image data set is of 
medium size, the recognition ratio performance is estimated by 
means of a leave-one-out procedure [9]. Table 1 compares our 
method’s performance to that of Histogram Matching method 
(HIST)[1]. 

 
Figure 1 Three images of same scene under different illuminants 

 
     To simulate geometric affine transformation, each image pixel's 

location (x,y) is changed into (x,y'), where 'y s x y= × + . That 

is, the new vertical coordinate is acquired by shift s x×  pixels 
along vertical direction while the horizontal coordinate is kept 
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untouched. The scale factors are chosen from 5 different values 
{0.2, 0.4, 0.6, 0.8, 1}. To simulate images with different blur level, 
we smooth the image with Gaussian filter with various standard 
deviations chosen from {2, 4, 6, 8, 10}. Some of transformed and 
blurred images are shown in figure 2. When an affine 
transformation scale factor (or Gaussian filter standard deviation) 
is selected, the transformed 172 images (or blurred images) and 
original 172 images are put together, then the performance is 
evaluated on the database with 344(172*2) images, the results are 
shown in table 2-3. Figure 3 gives out how overall performance 
changes as affine transformation scale or blur lever varies. As both 
the figure and table show, our method provides a technique that 
remains stable and good performance under distinct conditions. 

 
Figure 2 Top line: affine transformation examples with different s. Bottom 

line: examples using Gaussian blur with different 'σ . 
 
    The second experiment is based on 220 images of 22 scenes lit 
by 11 various lights [10]. The affine transformed images and 
blurred images are created using the same procedure noted in first 
experiment. The leave-one-out procedure is also used again. Their 
results are shown in table 4-6 and figure 4 

 
Conclusion 
Object recognition is a fundamental task in computer vision and 
color can provide valuable clue for it. However, the color of objects 
will vary depending on the illumination incident on it. To address 
this problem, a new color independent descriptor is presented in 
this paper. The descriptor is defined as a feature vector consisting 
of 7 normalized two dimensional chromatic moment invariants in a 
new color coordinate system, which is based on diagonal-offset 
model. Our experiments show that the proposed algorithm provides 
good performance under the change of illumination, 3D object 
geometry and image blur level. 
 

Acknowledgement 
This work is supported by National High Technology Research and 
Development Program of China (2007AA01Z168) and Science 
Foundation of Beijing JiaoTong University (2007XM008). 
 
References 
[1] M. J. Swain and D. H. Ballard: "Color Indexing", International 

Journal of Computer Vision, 7, (1), pp. 11-32 (1991) 
[2] B. V. Funt and G. D. Finlayson, “Color Constant Color Indexing”, 

IEEE Trans. On Pattern Analysis and Machine Intelligence, 17, (5), 
pp. 522-529, (1995) 

[3] T. Gevers, A. Smeulders, “Color based Object Recognition”, Pattern 
Recognition, 32, pp. 453-464, (1999) 

[4] D.A. Adjeroh; M.C. Lee, M.C. , “On ratio-based color indexing”, 
IEEE Transactions on Imaging Processing, Vol. 10, Issue 10, pp. 36-
48, (2001) 

[5] G. Healey, D. Slater, “Global color constancy: recognition of objects 
by use of iullumination-invariant properties of color distribution”, J. 
Opt. Soc. Am. A, Vol. 11, Issue 11 pp. 3003-3010, (1994) 

[6] A. Gijsenij, T. Gevers and J. V. Weijer: “ Color Constancy by 
Derivative-based Gamut Mapping”, Photometric Analysis for 
Computer Vision (PACV'07) in conjunction with ICCV, Oct 2007, Rio 
de Janeiro, Brazil, pp.21-28, (2007) 

[7] G. Finlayson, S. Hordley, and R. Xu. “Convex programming colour 
constancy with a diagonal -offset model”. In Proc. Int. Conf. on 
Image Processing, pp.948–951, (2005) 

[8] Mindru, F.; Moons, T.; Van Gool, L., “Recognizing color patterns 
irrespective of viewpoint and illumination”  In Proc. CVPR, pp. 23-25, 
(1999) 

[9] F. Mindru, T. Tuytelaars, L. V. Gool and T. Moons: “Moment 
invariants for recognition under changing viewpoint and illumination”, 
Computer Vision and Image understanding, 2004, 94, (1), pp.3-27 
(2004) 

[10] K. Barnard, L. Martin B. V. Funt and A. Coath: “A data set for colour 
research”, Color Research and Application, 27, (3), pp. 147-151 
(2002) 

 
 

Author Biography 
 
Mr. Bing Li,  is pursuing the PhD degree at the Beijing Jiaotong University, 
China. His research interests include computer vision, color constancy, and 
visual perception. 
 
Mr. De Xu, is currently a professor in the Beijing Jiaotong University, 
China. His research interests include database system, computer vision, and 
multimedia processing.

 
 
 

16th Color Imaging Conference Final Program and Proceedings 207



 1k =  3k =  5k =  7k =  9k =  Mean 
HIST 50.6% 54.7% 47.7% 41.9% 40.1% 47.0% 
Our method 97.1% 89.0% 87.2% 86.6% 82.6% 88.5% 

Table 1 Object Recognition Ratio of 172 images under the change of illumination change  
 
 
 

 
Affine 
transformation scale 

 1k =  3k =  5k =  7k =  9k =  Mean 

0.2 HIST 96.8% 54.7% 64.2% 64.2% 60.8% 68.1% 
 Our method 100.0% 97.1% 97.1% 90.7% 89.5% 94.9% 
0.4 HIST 96.5% 54.7% 64.2% 64.2% 60.8% 68.1% 
 Our method 100.0% 97.1% 97.1% 90.7% 89.5% 94.9% 
0.6 HIST 96.5% 54.4% 64.5% 64.2% 60.8% 68.1% 
 Our method 100.0% 97.1% 97.1% 90.7% 89.5% 94.9% 
0.8 HIST 96.8% 54.4% 64.2% 64.2% 61.3% 68.2% 
 Our method 100.0% 97.1% 97.1% 90.7% 89.5% 94.9% 
1 HIST 100.0% 50.6% 64.5% 65.7% 61.6% 68.5% 
 Our method 100.0% 97.1% 97.1% 90.1% 89.0% 94.7% 
Table 2 Object Recognition Ratio of 344 images (including 172 original images and 172 transformed images) under the change of 
affine transformation  

 
 
Gaussian deviation 
Value 

 1k =  3k =  5k =  7k =  9k =  Mean 

2 HIST 96.8% 54.7% 64.2% 64.2% 60.8% 68.1% 
 Our method 99.7% 96.8% 94.8% 90.4% 90.1% 94.4% 
4 HIST 96.5% 54.7% 64.2% 64.2% 60.8% 68.1% 
 Our method 98.8% 95.9% 93.3% 90.4% 89.5% 93.6% 
6 HIST 96.5% 54.4% 64.5% 64.2% 60.8% 68.1% 
 Our method 98.5% 96.2% 93.9% 90.7% 90.4% 93.9% 
8 HIST 96.8% 54.4% 64.2% 64.2% 61.3% 68.2% 
 Our method 98.5% 96.2% 93.3% 91.0% 90.1% 93.8% 
10 HIST 100.0% 50.6% 64.5% 65.7% 61.6% 68.5% 
 Our method 98.5% 96.5% 93.6% 91.0% 90.1% 93.9% 
 
Table 3 Object Recognition Ratio of 344 images(including 172 original images and 172 blurred images) under the change of image 
blur level 

 
Figure 3 (a) The average object recognition ratio of 344 images (including 172 original images and 172 transformed images) as a 

function of affine transformation and (b) The average object recognition ratio of 344 images (including 172 original images and 172 
blurred images) as a function of image blur level 
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Feature 1k =  3k =  5k =  7k =  9k =  Mean 
HIST 27.7% 25.9% 24.1% 22.3% 22.3% 24.5% 
Our method 85.5% 86.4% 84.5% 82.7% 80.5% 83.9% 

   Table 4 Object Recognition Ratio of 220 images under the change of illumination change 
 
 
Affine 
transformation 
Scale 

 1k =  3k =  5k =  7k =  9k =  Mean 

0.2 HIST 84.1% 33.2% 37.0% 43.2% 38.2% 47.1% 
 Our method 99.8% 87.5% 92.7% 88.2% 89.3% 91.5% 
0.4 HIST 84.3% 32.5% 37.0% 42.5% 38.0% 46.9% 
 Our method 99.8% 87.7% 92.5% 88.2% 89.3% 91.5% 
0.6 HIST 84.3% 32.5% 37.3% 42.5% 37.7% 46.9% 
 Our method 100.0% 87.7% 92.3% 88.4% 89.3% 91.5% 
0.8 HIST 83.9% 32.7% 37.5% 42.5% 38.2% 47.0% 
 Our method 99.5% 87.0% 92.7% 88.0% 89.1% 91.3% 
1 HIST 96.4% 27.7% 37.3% 44.1% 37.7% 48.6% 
 Our method 100.0% 85.5% 92.3% 87.3% 89.5% 47.1% 
Table 5 Object Recognition Ratio of 440 images (including 220 original images and 220 transformed images) under the change of 
affine transformation  
 
 
Gaussian deviation 
Value 

 1k =  3k =  5k =  7k =  9k =  Mean 

2 HIST 84.1% 33.2% 37.0% 43.2% 38.2% 47.1% 
 Our method 99.7% 96.8% 94.8% 90.4% 90.1% 94.4% 
4 HIST 84.3% 32.5% 37.0% 42.5% 38.0% 46.9% 
 Our method 98.8% 95.9% 93.3% 90.4% 89.5% 93.6% 
6 HIST 84.3% 32.5% 37.3% 42.5% 37.7% 46.9% 
 Our method 98.5% 96.2% 93.9% 90.7% 90.4% 93.9% 
8 HIST 83.9% 32.7% 37.5% 42.5% 38.2% 47.0% 
 Our method 98.5% 96.2% 93.3% 91.0% 90.1% 93.8% 
10 HIST 96.4% 27.7% 37.3% 44.1% 37.7% 48.6% 
 Our method 98.5% 96.5% 93.6% 91.0% 90.1% 93.9% 
 
Table 6 Object Recognition Ratio of 440 images (including 220 original images and 220 blurred images)under the change of image 
blur level  
 

 
Figure 4 (a) The average object recognition ratio of 440 images (including 220 original images and 220 transformed images) as a 

function of affine transformation and (b) The average object recognition ratio of 440 images (including 220 original images and 220 
blurred images) as a function of image blur level 
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