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Abstract 
A visible and near infrared (NIR) spectral reflectance 

database of commonly imaged objects was developed having 
minimal spectral redundancy. A spectral analysis was 
performed on this database to investigate the relationship 
between NIR and visible spectral reflectance. The correlation 
between the digital signals of theoretical NIR channels and 
tristimulus values for the database was analyzed to find the 
optimal NIR channel such that this channel could be used to 
improve color accuracy and improve image quality. The closer 
the NIR channel was located to the visible spectrum, the more 
optimal was the result. A colorimetric image segmentation 
algorithm was developed to improve this correlation. The 
spectral sensitivities of a typical color filter array (CFA) camera 
were used as a virtual camera model to test the viability of a 
NIR channel and colorimetric segmentation to improve color 
accuracy.  The simulation results using the database revealed 
the possibility to exploiting the NIR spectral sensitivities of 
common CFA cameras as an additional channel for improved 
color accuracy. 

Introduction 
Typical color filter array sensors use colored filters that 

tune the visible spectrum through selective absorption; they also 
transmit NIR radiation and as a consequence, each color channel 
has appreciable NIR sensitivity (Figure 13(a)). This sensitivity 
is usually undesirable and a blue-green colored filter is placed in 
front of the sensor that absorbs the unwanted NIR radiation and 
tunes the red channel’s spectral sensitivity. (The filter may also 
perform optical blurring to reduce aliasing.) It is also observed 
that the sensor quantum efficiency is low. This coupled with the 
current trend to increase resolution without enlarging the sensor 
area results in appreciable image noise, particularly under low 
luminance or high ISO conditions. 

 
Suppose a camera was designed where the NIR sensitivity 

could be separated from the visible region, either with an 
additional filter on the CFA (four color), or an additional CFA 
sensor filtered to only pass long wavelengths. Suppose also that 
commonly imaged objects had high correlations between the 
four spectral regions, which we will refer to as RGBI. Under 
these conditions, the NIR channel could be used to reduce image 
noise and improve color accuracy under low luminance levels.  
 

NIR imagery has been used widely in night vision devices 
where complex algorithms were developed to fuse low-light 
visible and infrared images to achieve “true” or “natural” color 
images for night vision [1-3]. For common imaging systems, 

there are several important issues, such as image noise, image 
color accuracy, and resolution and spectral frequency response. 
In the current research, the purpose was to exploit the 
“undesirable” NIR spectral sensitivities of common imaging 
systems with a simple camera color model [4] based on the 
correlation between the spectral reflectance of NIR and visible 
ranges for commonly imaged objects to improve color accuracy 
and image noise. 
 

The first step in this research was to perform a spectral 
analysis on commonly imaged materials to confirm the 
correlation between NIR and visible range spectral reflectance. 
A simulation with a virtual camera model was also performed to 
verify the viability of using an NIR channel to improve color 
accuracy. 

Database Development 
A minimum spectral redundancy spectral reflectance 

database was developed including visible and NIR wavelengths 
ranging from 400 nm to 1000 nm that consisted of natural and 
manmade objects. The spectral reflectance data were obtained 
from the following sources. The ASTER spectral library [5], 
including the Johns Hopkins University spectral library and the 
Jet Propulsion Laboratory spectral library, and the United States 
Geological Survey spectral library [6] were combined (ASTER). 
The second was the spectral database from the Digital Imaging 
and Remote Sensing Laboratory at Rochester Institute of 
Technology [7] (DIRS). The third was a sampling of the Esser 
TE221 test chart (ESSER). The fourth was current fabrics 
obtained from a retail fabric store (Fabric) and the fifth was 
color cards of painted samples from a retail paint store (Paint). 
The last three databases were measured using a PhotoResearch 
PR-715 spectroradiometer. A measurement of sintered Halon 
was used to convert spectral radiance to spectral reflectance 
factor. Only the spectral reflectance samples including 400 nm 
to 1000 nm were selected. Basically, ASTER represented the 
spectral reflectance of soils, rocks, minerals, vegetation, snow, 
ice and some manmade objects.  DIRS mainly focused on 
manmade objects (e.g., car paint, glass, bricks, plastics, cloth, 
and metals) and some natural objects (e.g., grasses, trees, and 
woods).  ESSER represented the spectra of ink on paper with 
sharp absorptions. Fabric included solid-color fabrics, both 
cotton and nylon. Two substrates were used in order to include 
different classes of dyes. Paint represented the pigments for 
interior and exterior coatings. The Fabric and Paint datasets 
represented current color trends. A sixth database was also 
created: thirteen measurements of different human skin colors, 
Skin. The idea was to include different kinds of imaged surface 
colors as much as possible.  
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For each dataset except for Skin, cluster analysis was 

performed to remove redundant spectra. The purpose was to 
balance the weighting of different classes of materials in the 
spectral analysis.  The sample numbers of each dataset before 
and after clustering are show in Table 1. 

Table 1. Sample numbers of each dataset 

Database Before clustering After clustering 
ASTER 765 574 
DIRS 383 288 
Fabric 80 60 
ESSER 112 84 
Paint 330 248 
Total 1670 1254 
Skin 13  

  
All the databases except for Skin were combined to one 

database. Again, cluster analysis was performed on this 
combined database to remove redundant spectra between the 
different databases. The final database contained 941 spectra. 
 

A Savitzky-Golay smoothing filter [8] was used to remove 
measurement noise in this combined database and the Skin 
database. The spectral reflectances of this minimum spectral 
redundancy database (MSR) and Skin are plotted in Figure 1. 
After interpolation, the spectral reflectance data were defined 
from 400 nm – 1000 nm with 5 nm intervals. The CIELAB 
values were calculated using the 1931 2° standard observer and 
D65, shown in Figure 2. 

           (a): MSR database                                  (b): Skin database 

Figure 1. Spectral reflectance of the MSR (941 samples) and Skin 

databases (13 samples) 

(a): Projection view of the MSR database 

 (b): Three dimensional view of the MSR database 

 (c): Projection view of the Skin database 

Figure 2. CIELAB values of the minimum spectral redundancy (MSR) and 

Skin databases 

Spectral Analysis 
The MSR and Skin databases were analyzed separately 

realizing the unique position of skin color when imaging. The 
analysis included principal component analysis (PCA) [9] and 
Pearson correlation coefficients. The results were plotted in 
Figures 3 and 4, respectively. 

 (a): MSR database 

(b):Skin database 

Figure 3. PCA analysis results of the MSR and Skin databases 
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For the MSR database, the first eigenvector was flat 
indicating that many of these samples were composed of 
spectrally non-selective colorants such as carbon-containing 
pigments. Four to five eigenvectors were required to describe 
the variance with sufficient accuracy. The mean reflectance in 
Figure 3 (b) reveals the high spectral reflectance of skin in the 
NIR range, which suggested the potential applications of NIR 
channels in improving image quality of portraiture. The second 
and the third eigenvectors show the hemoglobin absorptions [10, 
11]. Typically, three eigenvectors are sufficient to describe the 
spectral variability of skin spectra. 
 

Pearson correlation coefficients were computed for the 
spectral data between each pair of wavelengths for each 
database. The results are shown in Figure 4. The correlation 
between NIR and visible spectra was weak for the MSR 
database. The closer the NIR wavelength was to the visible 
region, the better the correlation. The correlation coefficients for 
Skin revealed high correlation between NIR and visible 
wavelengths. 

(a): MSR database                                (b): Skin database 

Figure 4. Pearson correlation coefficients for the MSR and the Skin 

databases 

Correlations Between NIR Channels and 
Tristimulus Values 

A camera model was defined where long-pass filters 
between 640 nm and 1000 nm in 20 nm increments simulated a 
set of NIR channels, plotted in Figure 5. The starting 
wavelength of 640 nm was selected because a camera that is 
designed for color accuracy usually has peak sensitivities below 
640 nm. The virtual digital signals of samples of both databases 
were calculated using this camera model with assumed equal-
energy illumination.  In addition, CIE tristimulus values were 
calculated for each spectrum for illuminant D65 and the 1931 2° 
standard observer. The relationship between virtual digital 
counts and the tristimulus values is shown in Figures 6 and 7 for 
MSR and Skin, respectively.  In Figures 6 and 7, only the digital 
counts of two channels with cut-off wavelengths of 640 nm and 
1000 nm are plotted. Generally, the signals from channels with 
cut-off wavelength closer to the visible range had better 
correlation with tristimulus values than these far away from the 
visible range. For the Skin database, the correlation between the 
NIR signals and the tristimulus values was quite good. 

 
Linear least squares regression was performed between the 

independent variables, the signals of each channel, and 
dependent variables, the tristimulus values, and a correlation 
coefficient (r2) was calculated to indicate the extent of scatter.  
A correlation coefficient approaching unity indicates minimal 

scatter and that the dependent variables could be well predicted 
from the independent variables. The r2 for each tristimulus value 
as a function of wavelength is plotted in Figure 8. As 
anticipated, the correlation increased with the decrease of cut-
off wavelength, since shorter wavelengths are closer to the 
visible range.  Tristimulus values Z had the lowest correlation 
because the corresponding color matching function is located in 
the short visible wavelength region, furthest from the NIR. 

Figure 5. Transmittance of the filters for the camera model 

 (a): 640nm cut-off filter 

 (b): 1000nm cut-off filter 

Figure 6. Camera signals vs. X, Y, Z for the MSR database 

(a): 640nm cut-off filter 

 (b): 1000nm cut-off filter 

Figure 7. Camera signals vs. X, Y, Z for the Skin database 

(a): MSR database               (b): Skin database 

Figure 8. r2 between the signals from the cut-off wavelength channels and 

each listed tristimulus values based on linear regression 
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In addition, the average color differences between the 
predicted tristimulus values from the regression and the actual 
tristimulus values for all 941 samples were calculated for the 
MSR and the Skin databases and shown in Figure 9. The large 
average color differences for MSR represented the weak global 
linear relationship between the virtual signals from NIR 
channels and the colorimetric coordinates.  

Figure 9. Average color difference evaluating the performance of the 

linear regression color prediction 

Step-wise multiple-linear regression was performed 
between the digital counts of all NIR channels as independent 
variables and the tristimulus values as dependent variables. The 
results are shown in Table 2. In Table 2, the signals from these 
channels that had p-values smaller than 0.05 had statistically 
significant effects on the regression results if these channels 
were removed from the list of independent variables.  βi 
represented the regression coefficients of each channel after 
removing these insignificant channels. The absolute values of 
the t-statistics provided the significance of different channels in 
the regression. The similar trend to that described above was 
illustrated in Table 2: channels closer to visible range had a 
larger effect on the regression, indicating higher correlation 
between these signals and the tristimulus values. The first six 
channels had the largest effect on the regression. 

Colorimetric Image Segmentation to Improve 
Correlation 

The above analysis revealed that global correlation between 
NIR spectra and visible spectra (or the signals from NIR 
channels and the colorimetric values) of commonly imaged 
objects was weak, which suggested that segmentation in a color 
space might achieve higher local correlations. More sub-spaces 
will achieve better local correlation in segmentation and the 
maximum number of sub-spaces will be determined by the 
computational capability of the imaging system. (Image quality 
issues related to segmentation are beyond the scope of this 
research.) Here, as a proof of concept, the segmentation was 
optimized by evaluating the CIELAB parameters of L*, C*

ab and 
hab, independently. Namely, the CIELAB space was first 
segmented by: one constant L* plane, one constant C*

ab 
cylindrical surface, and four constant hab planes, separately. 
These four planes are parallel or perpendicular to each other and 
divided the space into four equal subspaces. These constant L*, 
C*

ab and hab values of these surfaces were designated as “gate 
values.” These gate values were optimized through the multi-
linear regression between the digital counts of the first six 
channels (640nm – 740nm in 20nm increments) of the camera 
model and the tristimulus values for the MSR database. The first 
six channels were selected based on the step-wise multi-linear 
regression results listed in Table 2, in which the first six 
channels represented significant influence on the regression 

performance. The results of optimization on gate values are 
shown in Figure 10, in which the residual error was plotted as a 
function of gate value. 

            (a): CIELAB lightness                          (b): CIELAB chroma 

 (c): CIELAB hue angle 

Figure 10. Residual error as a function of CIELAB lightness, chroma and 

hue angles for tristimulus values 

Without segmentation, the RMS residuals of regression on 
X, Y and Z for the MSR database were 6.72, 9.92, and 17.26, 
respectively. After segmentation, the regression performance 
improved. In Figure 10(b) for chroma, segmentation had a noted 
improvement when selecting the optimal gate values.  In Figure 
10(a) for lightness and Figure 10(c) for hue angles, different 
gate values did not have an impact on performance. It was 
decided to segment CIELAB space with the optimal gate values 
L* = 57, C*

ab = 27 and hab = 80°, 170°, 260° and 350°. This 
resulted in 16 sub-spaces. The segmentation results for the MSR 
database are shown in Table 3. It was interesting to find that 
there were no high lightness, high chroma blues and few high 
lightness, high chroma greens in the MSR database. The largest 
group was high lightness, low chroma yellow colors that 
represented the scenes of soils and metal oxides.  

Table 3. Segmentation results for the MSR database 

Group No. L* C* h* 
1 69 Dark Low Quadrant 1 (Yellowish) 
2 26 Dark Low Quadrant 2 (Greenish) 
3 21 Dark Low Quadrant 3 (Bluish) 
4 69 Dark Low Quadrant 4 (Reddish) 
5 18 Dark High Quadrant 1 (Yellowish) 
6 11 Dark High Quadrant 2 (Greenish) 
7 31 Dark High Quadrant 3 (Bluish) 
8 75 Dark High Quadrant 4 (Reddish) 
9 324 Light Low Quadrant 1 (Yellowish) 

10 53 Light Low Quadrant 2 (Greenish) 
11 49 Light Low Quadrant 3 (Bluish) 
12 100 Light Low Quadrant 4 (Reddish) 
13 46 Light High Quadrant 1 (Yellowish) 
14 5 Light High Quadrant 2 (Greenish) 
15 0 Light High Quadrant 3 (Bluish) 
16 44 Light High Quadrant 4 (Reddish) 
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The spectral reflectances of samples in each group are 
shown in Figure 11. For some groups, the spectra were similar, 
such as for groups 6 and 8 while for the other groups, there was 
quite a bit of variability.  

Figure 11. Spectral reflectance divided into CIELAB subgroups 

Linear regression was performed between the digital counts 
of each cut-off channel and the tristimulus values for each 
group, separately. The average color difference for all 941 
samples was 8.7 ΔE00, which was much smaller than the average 
color difference around 17 ΔE00 plotted in Figure 9. This 
supported the viability of image segmentation by color as an aid 
to using NIR signals in color processing. 

Effect of Using an NIR channel and Image 
Segmentation on Color Accuracy 

The effect of using an NIR channel and image 
segmentation on color accuracy was simulated as the workflow 
in Figure 12. The digital counts of RGB channels were used to 
roughly estimate CIELAB values and these CIELAB values 
were employed for segmentation. The segmentation can also be 
done in other spaces, such as RGB channels and XYZ 
tristimulus values. Here, the workflow was only one example of 
the implementation.  

 Figure 12. Implementation flowchart 

The spectral sensitivities of a Sinar™ 54H (as plotted in 
Figure 13 (a)), an RGB CFA digital camera, were used to 
represent a typical CFA digital camera. A blue-green filter was 
added to the system, resulting in the RGB sensitivities plotted in 
Figure 13 (b). In addition, the NIR channel was assumed to have 
the sensitivities of the red channel in Figure 13 (a) with a 640 
nm cut-off filter. Because of the larger quantum efficiency for 
the red channel, the NIR channel had sensitivity even higher 
than the green channel. 

(a) (b) 

Figure 13. Spectral sensitivities of the virtual camera model with R, G, B 

and NIR channels 

The virtual digital counts of 941 spectra of the MSR 
database were calculated assuming equal-energy illumination. 
Nonlinear optimization was used to build the colorimetric-based 
(3x3) or (3x4) matrices [4] to convert the camera signals (either 
without or with the NIR channel) to tristimulus values for D65 
and 1931 2° standard observer. The optimization minimized the 
average CIEDE2000 color difference. Three different methods 
were used for comparative purposes: using three channels 
(RGB) without segmentation, using four channels (RGBI) 
without segmentation, and using four channels (RGBI) with 
segmentation. The histograms of the prediction results are 
shown in Figure 14. 

      (a): RGB w/o Segmentation                   (b):RGBI w/o segmentation 

                                      (c): RGBI w/ segmentation 

Figure 14. Color difference histograms illustrating the effect of NIR 

channels and using segmentation on color accuracy 

The average CIEDE2000 of 1.7 is typical for a CFA three-
channel camera with a well-selected blue-green filter [12]. The 
maximum error of this three-channel camera was 16.8 ΔE00 and 
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a large number of samples had color differences greater than 5 
ΔE00.  The addition of the NIR channel had a marked effect on 
performance. The average color difference decreased from 1.7 
to 1.1 ΔE00. The maximum color difference was greatly reduced 
from 16.8 to 7.2 ΔE00. With segmentation, the performance was 
further improved with average and maximum errors of 0.8 and 
4.8 ΔE00, respectively. This result proved the viability of a NIR 
channel and using segmentation to improve the color accuracy 
of camera systems.  

Conclusions 
This research explored the viability of exploiting the NIR 

spectral sensitivities of CFA cameras as an additional channel to 
improve color accuracy based on the analysis of a database of 
commonly imaged objects with minimal spectral redundancy. 
The theoretical simulation results revealed that with proper 
implementation, the NIR channel improved color accuracy 
appreciably, particularly by reducing the maximum errors. In 
our experience, observers are very sensitive to outliers when 
evaluating color image quality.  
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Table 2. Step-wise multi-linear regression results 

Channels (Cut-off 
wavelength, nm) 

With X With Y With Z 

βi t-stats p-value βi t-stats p-value βi t-stats p-value 

640 9886.6 19.86 0.00 12695.7 18.61 0.00 14358.8 11.12 0.00 
660 -24408.9 -16.06 0.00 -30921.4 -16.07 0.00 -39745.4 -9.67 0.00 
680 25315.4 11.47 0.00 29383.7 13.41 0.00 50058.0 7.66 0.00 
700 -16335.5 -7.17 0.00 -14915.6 -11.05 0.00 -42938.3 -5.67 0.00 
720 6996.1 4.56 0.00 3891.3 9.73 0.00 26773.6 4.33 0.00 
740 -1372.9 -2.93 0.00 0.0 -1.76 0.08 -11062.6 -3.39 0.00 
760 0.0 1.03 0.30 0.0 -1.47 0.14 2732.4 3.01 0.00 
780 0.0 0.06 0.96 0.0 -1.05 0.30 0.0 -1.12 0.26 
800 0.0 -0.31 0.76 0.0 -0.28 0.78 0.0 -1.07 0.29 
820 0.0 -0.51 0.61 0.0 0.34 0.73 0.0 -1.04 0.30 
840 0.0 -0.69 0.49 0.0 0.76 0.45 0.0 -1.02 0.31 
860 0.0 -0.93 0.35 0.0 1.00 0.32 0.0 -1.03 0.30 
880 0.0 -1.15 0.25 0.0 1.17 0.24 0.0 -1.07 0.29 
900 0.0 -1.18 0.24 0.0 1.34 0.18 0.0 -1.15 0.25 
920 814.0 3.85 0.00 0.0 1.34 0.18 0.0 -1.41 0.16 
940 -1371.5 -3.70 0.00 -44.5 -4.68 0.00 0.0 -1.89 0.06 
960 563.4 3.27 0.00 0.0 0.11 0.92 0.0 -1.84 0.07 
980 0.0 -0.71 0.48 0.0 0.04 0.97 0.0 -1.62 0.10 

1000 0.0 -0.84 0.40 0.0 -0.21 0.83 -96.9 -5.58 0.00 
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