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Abstract 
Urban and Grigat [ Color research and Application 31: 

pages 229-238] proposed an iterative method for the inversion of 
the Cellular Yule-Nielson modified Neugebauer model. The 
method involves matrix and vector multiplications per iteration. 
Urban et al [CIC15, pages 178-183, 2007] reported that the 
computational costs per iteration could be reduced by introducing 
the singular value decomposition of the matrix. In this paper, 
“QR” decomposition for the matrix is introduced.  The matrix 
“Q” is an orthogonal matrix and “R” represents an upper 
triangular matrix. Using this kind of decomposition, an upper 
triangular matrix is involved per iteration; hence the 
computational cost can be further reduced comparing with the 
work of Urban et al (2007). 

Introduction 
The Neugebauer model [1] is one of the most basic tools for 

modelling colour printing systems. For using this model for 3-ink 
(Cyan (c), Magenta (m), and Yellow (y)) printer, eight 
Neugebauer primaries must be measured. Let )(λiR , 

8,,2,1 L=i  ,  be the reflectances measured from the 

corresponding primary colours. The names of the eight primary 
colours, combination of inks, and the reflectance functions are 
listed in the first, second, and third columns respectively of Table 
1. For any combination of inks c , m , and y , the resulting colour’s 
reflectance on the printer is given by equation (1): 
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which is the classical Neugebauer equation. The coefficients ia  
are defined in the last column of Table 1.  

One of the most improvements over the classical Neugebauer 
model is the Cellular Neugebauer model proposed by Heuberger et 
al [2]. A three-level Cellular Neugebauer model is shown in Figure 
1. There are eight cells and 27 measurements must be made. 
Suppose we divide the whole space into N levels in each ink 
direction and let the corresponding ink densities denote by 

Nccc ,,, 10 L ,  Nmmm ,,, 10 L ,  Nyyy ,,, 10 L  
in ascending order for each ink.  For each of the given cyan, 
magenta, and yellow ink values: c, m, and y , the cell containing c , 
m , and y  must be found. Suppose the cell is represented by: 

           ],;,;,[ 111 +++ kkjjii yymmcc  

Table 1: Eight primaries, ink combinations, reflectances of the primaries, and coefficients for predicting reflectance using Neugebauer 
model for a given ink combination (c,m,y) 

Primary Ink Combination (c,m,y) Reflectance Coefficient 
White (0,0,0) )(1 λR  )1)(1)(1(1 ymca −−−=  
Cyan (1,0,0) )(2 λR  )1)(1(2 ymca −−=  
Magenta (0,1,0) )(3 λR  )1()1(3 ymca −−=  
Yellow (0,0,1) )(4 λR  ymca )1)(1(4 −−=  
Red (0,1,1) )(5 λR  myca )1(5 −=  
Green (1,0,1) )(6 λR  ymca )1(6 −=  
Blue (1,1,0) )(7 λR  )1(7 ycma −=  
Black (1,1,1) )(8 λR  cmya =8  

 
 

Then, 'c , 'm , and 'y  can be obtained by using the 
following transformations 
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Now the eight coefficients can be computed using the formulae in 
Table 1 with 'c , 'm , and 'y  values. The eight reflectance 
functions of the primary colours now correspond to the corners of 
the cell. As soon as the eight coefficients and reflectance functions 
are found, the predicted reflectance )(λR  corresponding to the 
given cyan, magenta, and yellow ink values: c , m , and y  can be 
computed using equation (1). 

The Yule-Nielsen effect [3] can be incorporated into the 
Cellular Neugebauer Model to reflect the scattering behavior of 
photons penetrating into the substrate, which can be simply 
realized by adding one parameter n into equation (1). The new 
equation now becomes: 
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The Cellular Neugebauer Model with equation (3) rather than 
equation (1) is called the Cellular Yule-Nielson modified spectral 
Neugebauer (CYNSN) model in references [4,5]. The parameter n 
will also affect the performance of the CYNSN model, which can 
be obtained using optimization with certain training data. 
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Theoretical consideration can be fund from other publications [6-
8]. 
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             Figure 1. Cell illustration for three-level Cellular Neugebauer Model 

The Inversion of the CYNSN Model 
Urban and Grigat [4] used the cellular Yule-Nielson modified 

Neugebauer (CYNSN) model for the spectral separation of 
multispectral images. Let A be defined by: 
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where iR   are the reflectance functions (column vectors) of the 

eight corners of a cell and  )/1()( n
iR  is evaluated at each of the 

components of column vector iR . Note that if the reflectance 

function is sampled at 10nm interval between 400nm and 700nm, 
then A is a matrix of size 831× . Let also all the coefficients in 
equation (3) form a column vector a, i.e.,  

),,,,,,,( 87654321 aaaaaaaaaT =                               

(5) 
Here T is the transpose of a vector or matrix. If we let R   be a 
reflectance function (column vector), then the inverse CYNSN 
model is expressed by minimising the function ),,( ymcf   

defined by equation (6): 
2
2||||),,( rAaymcf −=        with  )/1()( nRr =         (6) 

 
Here, for any column vector p 
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Urban and Grigat [4] developed an algorithm for the inversion of 
the CYNSN. The algorithm can be summarised below: 

 
Urban and Grigat (UG) Algorithm (2006): (applied to 

2
2||||),,( rAaymcf −= ) 

Choose initial: TTymcx )5.0,5.0,5.0(),,( )0()0()0()0( == , 

the error tolerance τ  ( a small positive number, 510−=τ  for 

example), and a large integer maxk   

For k=1,2, … till maxk   do the following two steps: 

Step 1: 
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Step 2: 

If ))(1(|)()(| )()1()( kkk xfxfxf +<− − τ  and 

)||||1(|||| 2
)(

2
)1()( kkk xxx +≤− − τ  stop and accept 

Tkkkk ymcx ),,( )()()()( = as the approximate solution. 

 
The above algorithm deserves some notes. 

Note 1: 
c

ymca kkk

∂
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  evaluated at 

),,( )1()1()1( −−− kkk ymc  , and others have the similar meanings.  
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In addition, it can be found that mya   is part of 
c

a

∂
∂

 , cya   is 

part of 
m

a

∂
∂

 , and cma   is part of 
y

a

∂
∂

 . Hence, computing mya , 

cya   and cma   need no extra cost.    

Note 2:  when computing )(kc  in Step 1, if it is greater than 
1, it is set to 1, and if it is less then 0, it is set to 0. This is true for 

computing )(km  and )(ky  as well. 

Note 3: computing the matrix and vector product 

),,( )1()1()1( −−− kkk
my ymcAa   needs no extra computational work 

since it is part of the computational work for computing 

c

ymca
A

kkk
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 . Thus, for computing )(kc  , one 

vector evaluation (
c

ymca kkk

∂
∂ −−− ),,( )1()1()1(

 ), one matrix and 

vector multiplication and two inner products of vectors are 

involved. Computing  )(km   or )(ky   has the exact same cost as 

computing )(kc . Thus, if we let A be size of L by 8, then  number 
of multiplications per iteration are:  

M1=3[4 (vector evaluation) + 8L (matrix*vector) + 2L (inner 
product) +1]                                                                          (7) 
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Note 4: Urban et al [5] further accelerated the above 
algorithm by using the singular value decomposition [9] of the 
matrix A. In fact, Let 

TUDVA =  
where U  (or V  ) is an orthogonal matrix and D   is a matrix 
having the same size as A and being zero everywhere except at 
diagonals which are the singular values of the matrix A. Thus,  
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where qb   is a column vector having q components and qB  is a 
matrix having q rows. Urban et al [5] pointed out that normally 
matrix B is close to a zero matrix, hence we have  
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Thus, minimising function 2
2||||),,( rAaymcf −=  is 

approximately equivalent to minimise  
2
2||||),,( qq baBymc −=φ           (9) 

since 2
2|||| p  is independent of the inks . Hence applying the UG 

algorithm to 2
2||||),,( qq baBymc −=φ  will decrease significantly 

computational costs per iteration compared with applying the UG 

algorithm to 2
2||||),,( rAaymcf −=  if q is set to be small 

compared with L. Detail analysis for more than 3 inks was given 
in [5]. Note also that for 3-inks, q should not be larger than 8, and 
for 4-inks, q should not be larger than 16. For 3-inks, the amount 
of multiplications per iteration in this case is given by: 

M2=3[4 (vector evaluation) + q*L (matrix*vector) + 2q 
(inner product) +1]                                                            (10) 

 

Further Acceleration of UG Algorithm by QR 
Decomposition  

As noted above, Urban et al [5] demonstrated that the 
inversion of the CYNSN model using the UG algorithm with the 
singular value decomposition of the matrix A can be accelerated. 
Now we want to show if we use ‘QR’ decomposition for the 
matrix A, further gain can be obtained. The so-called QR 
decomposition [9] is that the matrix A can be expressed as: A=QS, 
where Q  is an orthogonal matrix of size L by L and S is an ‘upper 
triangular’ matrix of size L by 8 having the following form: 
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Here U is an 8 by 8 upper triangular matrix, x represents non-zero 
elements, and O is an (L−8) by 8 matrix. 
 

Note that with 4-ink printer, the above matrix U is a size of 16 by 
16 and O is a size of (L−16) by 16. When a printer has more than 4 

primary inks, see for example has k inks, then k2  is normally 
greater than L. In this case, matrix S is simply the matrix U which 

is a size of L by k2  , and has the following form: 
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with b being a column vector of 8 components results in:  
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Note that p is independent of c, m, and y. Thus, minimisation of 
the function ),,( ymcf   is equivalent to the minimisation of  

2
2||||),,( bUaymc −=ϕ                             (14) 

Therefore, applying the UG algorithm to 2
2||||),,( bUaymc −=ϕ  

will decrease significantly computational costs per iteration 
compared with applying the UG algorithm to 

2
2||||),,( rAaymcf −= . In this case, the amount of 

multiplications per iteration is given by 
 
M3=3[4 (vector evaluation) + 4*9 (matrix*vector) + 2*8 (inner 
product) +1]                                                                (15) 
 
If we let L=31, and q=8. Thus, the UG algorithm applied to 

2
2||||),,( rAaymcf −=   needs M1=945 multiplications, the UG   

algorithm applied to 2
2||||),,( qq baBymc −=φ   (Urban et al [5]) 

needs M2=255 multiplications, and the UG algorithm applied to  
2
2||||),,( bUaymc −=ϕ  needs M3=171 multiplications. Thus, the 

current approach saves 82 percent compared with the original UG 
algorithm, and 33 percent compared with the approach of Urban et 
al [5].  
 

One may argue that the UG algorithm with SVD 
decomposition may have less computational costs per iteration by 
choosing smaller q. Yes, this is true if q is small. Table 2 shows 
the amounts of multiplications (M2) for this approach with q=1,2, 
till 8. As noted before, there is no point to choose q greater than 8 
for 3-ink printer. M1 represents the amount of multiplications for 
the original UG algorithm and M3 for the UG algorithm with QR 
decomposition of A. However, they are not affected by the choices 
of q. It can be seen that from Table 2, when q is less than or equal 
to 5, the UG algorithm with SVD decomposition will be faster 
than the current approach. However, we have to note that this is at 
the expense of loosing accuracy. In fact, with our 3-ink printer, it 
is fund that for a typical cell, if we let TUDVA =   and 

TDVH =  , the elements in the first row of H have magnitudes 
of x.xxxx, here x represents non zero value; elements in the second 
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to fourth rows have magnitudes of 0.xxxx; and elements in the 
fifth to eighth rows having magnitudes of 0.0xxx. Thus, using q 
less than 8 will definitely lose accuracy. But the current approach 
does not loss accuracy. On the other hand, the elements of the 
matrix U in equation (11) for the QR decomposition have 
magnitudes less than  those of the matrix TDVH = . Hence, the 
q rows of U (hence b in equation (14)) can be used as well if the 
accuracy is not important.  

 
Table 2 also shows the ratios: 1/3 MM    and 2/3 MM  . When 
q=8, the ratios are 0.18 and 0.67 respectively, which show the 
current approach only takes 18 percent of the original UG 
algorithm and 67 percent of the UG algorithm with SVD 
decomposition.  

Table 2: Amounts of multiplications for the original UG algorithm (M1), the UG algorithm with SVD decomposition (M2), and with QR 
decomposition (M3) for q=1 to 8 respectively for 3-ink printer, and the ratios: 1/3 MM  and 2/3 MM . 

q M1 M2 M3 M3/M1 M3/M2 
1 945 45 171 0.18 3.8 
2 945 75 171 0.18 2.28 
3 945 105 171 0.18 1.63 
4 945 135 171 0.18 1.27 
5 945 165 171 0.18 1.04 
6 945 195 171 0.18 0.88 
7 945 225 171 0.18 0.76 
8 945 255 171 0.18 0.67 

 
 

Table 3: Amounts of multiplications for the original UG algorithm (M1), the UG algorithm with SVD decomposition (M2), and with QR 
decomposition (M3) for q=1 to 16 respectively for 4-ink printer, and the ratios: 1/3 MM  and 2/3 MM . 

q M1 M2 M3 M3/M1 M3/M2 
1 1725 105 555 0.32 5.29 
2 1725 159 555 0.32 3.49 
3 1725 213 555 0.32 2.61 
4 1725 267 555 0.32 2.08 
5 1725 321 555 0.32 1.73 
6 1725 375 555 0.32 1.48 
7 1725 429 555 0.32 1.29 
8 1725 483 555 0.32 1.15 
9 1725 537 555 0.32 1.03 
10 1725 591 555 0.32 0.94 
11 1725 645 555 0.32 0.86 
12 1725 699 555 0.32 0.79 
13 1725 753 555 0.32 0.74 
14 1725 807 555 0.32 0.69 
15 1725 861 555 0.32 0.64 
16 1725 915 555 0.32 0.61 

 
 
Table 3 shows details about 4-ink printer. The current approach 
will save 68 percent computational work per iteration compared 
with the original UG algorithm. For q =16, the current approach 
will save 39 percent computational work per iteration compared 
with the UG algorithm with SVD decomposition. For q less than 
or equal to 9, the UG algorithm with SVD decomposition will be 
faster than the current approach at the expense of losing accuracy. 
On the other hand, the current approach can also use q rows when 
accuracy is not an important factor.   
 
The current approach only uses 58% of the amount of 
computational work of the original UG algorithm for 5-ink printer 
and 79% for the 6-ink printer.  
 

Conclusions 
The original UG algorithm [4] for the inversion of the 

CYNSN model was improved using the QR decomposition. It is 
shown that the current approach only uses 18, 32, 58, and 79 
percents of the original UG computational work for 3-, 4-, 5- and 
6-ink printers respectively. Unlike the approach of Urban et al [5] 
using SVD decomposition, the current approach does not sacrifice 
any accuracy for achieving the acceleration.  

 
When comparing the current approach with that of Urban et 

al [5], it is slightly more complicated since the latter achieves the 
acceleration at the expense of losing accuracy. Even at the expense 
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of losing accuracy the current approach is still better than their 
approach in certain cases. However, the current approach can also 
use fewer rows from corresponding matrix and vector so that 
further saving can be achieved. Thus if both methods use the same 
number of rows, the current approach is always better. 
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