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Abstract 
An ink separation algorithm is introduced for printing with  6 

to 9 inks. A spectral gamut mapping algorithm is also introduced 
that projects an input reflectance onto the manifold of the printer 
spectral gamut space The ink separation, which is finding the best 
ink combination to reproduce a given reflectance, is done by 
applying an interpolation between printer gamut points 
neighboring a projected point point’s geodesic location.  
The technique finds the best manifold projection using ISOMAP.  
The algorithm searches for the lowest dimensionality that holds the 
spectral information accurately. Using this method we were able to 
find a good ink combination given an input reflectance for both a 
6-ink and 9-ink printer model.  

Introduction 
In comparison to standard color printing, spectral printing 

aims to reproduce a given reflectance spectrum rather than produce 
a metameric reflectance spectrum that simply matches a given 
color. Spectral printing aims to reduce a problem that can arise in 
metameric color printing which is that the reproduced color may 
match under one illuminant, but not match well under some other 
illuminant. Clearly, if the printed output reflectance  matches the 
input reflectance, the printed color will match the input color 
under all illuminants.  

Spectral printing requires a significantly larger number of 
inks than the standard CMYK ones, but this increases the 
computational complexity of printing algorithms in terms of both 
time and space. In particular, standard gamut-mapping algorithms 
map colors within a 3-dimensional space. Generally, their 
computational complexity increases rapidly with dimension, so 
that they become intractable for the gamut-mapping of spectra 
represented in, say, 11 dimensions. For example, a gamut-mapping 
algorithm that relies on the computation of the convex hull of the 
measured gamut will not work, since computing a d-dimensional 
convex hull of n points requires order O(n**floor(d/2)+1) 
operations. Bakke et al. [7] address this problem by reducing the 
dimensionality via principal components analysis and then 
computing the convex hull in up to 8 dimensions.  

The first part of this paper introduces an ink separation 
method based on spectral data. This method uses interpolation in 
geodesic locations to find the best ink combination to match a 
spectral reflectance. McIntosh et al. [12] have previously applied 
the idea of interpolating over geodesic distances rather than 
Euclidean distances to improve an image segmentation algorithm. 
The second part of the paper a spectral gamut mapping algorithm 
is introduced based on manifold projection. The last part of the 
paper evaluates performance of the two models against some of the 
existing approaches. The result is presented in both Root Mean 
Squared of the spectral reproduction and ∆E94 under 11 different 
illuminations.  

 

ISOMAP and Multidimensional Scaling 
ISOMAP [2] is a nonlinear generalization of classical 

Multidimensional Scaling (MDS) [1]. MDS maps the input data  to 
a lower dimensional space, subject to the constraint that pairwise 
distances between data points are preserved as much as possible. 
The main idea of ISOMAP is to perform MDS, not on the input 
space distances, but on the geodesic distances between points on 
the data manifold. The geodesic distances represent the shortest 
paths along the curved surface of the manifold. This can be 
approximated by a sequence of short steps between neighboring 
sample points. ISOMAP then applies MDS to the geodesic, rather 
than straight line, distances to find a low-dimensional mapping 
that preserves these pairwise distances. 

Thin Plate Spline Interpolation 
As is typical of interpolation methods, thin-plate spline (TPS) 

interpolation [10] constructs a function f  that matches a given set 
of data values yi, corresponding to a given set of data vectors Xi = 
[Xi,1, Xi,2, … Xi,D] in the sense that yi = f(Xi). Xiong et al. extended 
the TPS model to N-dimensions and applied it to illumination 
estimation successfully [9].  

For the spectral printing process, in this paper TPS is used to 
find a continuous function that maps between the set of inks and 
each of the output dimensions. For instance if the output spectral 
reflectance of an 8-ink printer is measured from 380nm to 730nm 
with a 10 nm sampling, TPS is used to create 36 separate functions 
mapping from the 8 input dimensions to each reflectance 
wavelength 380nm, 390nm, …. to 730nm individually 

Geodesic Location and Ink Separation 
 
Interpolation is a common approach to ink separation, and we 

use interpolation here. In general, an ink combination is 
interpolated as a weighted combination of ink formulas from 
nearby experimentally measured data points. The weights typically 
are derived from the distance of the point to be interpolated from 
its neighbors. The distance metric can be defined in many different 
ways. For instance, the distance between two spectral reflectances 
can be measured as the Euclidean distance between them. We 
propose interpolation based on geodesic distances on the gamut 
manifold. 

Many spaces appear to have a high dimensionality in a linear 
space, but actually have lower intrinsic dimensionality. A good 
example is the Swiss Roll example of Tenenbaum et al. shown in 
Figure 1, along with its projection into 2 dimensions shown in 
Figure 2. Clearly, the geodesic distances on the 2D manifold are 
not the same as the direct Euclidean distances in 3-space. 
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Figure 1: Swiss Roll representation in 3 dimensions   

 

 
Figure 2: Un-folded Swiss Roll data into 2 dimensions using ISOMAP 

 
The proposed ink separation method uses the geodesic 

distances between data points. The algorithm is as follows: 
1. Given a training set of points (reflectances of print 

samples), the geodesic distances between the input  
reflectance (the reflectance to be printed) and all 
training points in the gamut are calculated 

2. The geodesic distances are used in MDS to 
calculate the point locations in a space of lower 
dimension. 

3. Thin Plate Spline interpolation is used based on the 
data point locations in the new space  

Steps 1 and 2 are part of the standard ISOMAP algorithm [2]. 
ISOMAP makes the assumption that the Euclidean distances to 
points within the local neighborhood of a given point P 
approximate the corresponding geodesic distances. The geodesic 
distances to a point Q outside the local neighborhood is calculated 

as the sum the distances between neighboring points along the 
shortest path from P to Q. 

 
 

Spectral Gamut Mapping based on Manifold 
Projection  
 

Bastani et al. [6] showed that almost 99% of the scene 
reflectances in spectral space fall outside of the printer gamut even 
if the printer ink sensitivity is optimized and we use as many as 12 
inks. This means spectral gamut mapping becomes an important 
part of spectral reproduction work.  
  In this section we present a spectral gamut mapping 
algorithm based on manifold projection. The steps are as follows: 
 

1. Given a printer gamut space, calculate the data point 
geodesic locations using ISOMAP 

2. Transfer the input spectral reflectance using the same 
transformation  

3. After the transformation, gamut mapping is then applied 
in the transformed space, which tends to have a lower 
dimensionality.  

 

Evaluation Method 
 
As a measure of the gamut mapping performance, we find the 
difference between a mapping using the above technique versus a 
mapping that iteratively searches hierarchically for the best closest 
match. In this algorithm a subdivision of ink combinations is 
created. Let the set of the subdivisions of ink space be M, where 
there is a spectral reflectance associated with each ink 
combination, mi, in M. The Hierarchical Search (HS) method is: 

1. Find the closest mi spectrum to a given input point � in 
spectral space.  

2. Create a grid of ink subdivisions around mi with smaller 
ink variation.  

3. Go back to step 1 until the grids are small enough. Then 
go to the next step. 

4. Return spectral reflectance of mi as the closest point. 
The accuracy of the manifold projection algorithm is compared to 
the above HS search method.  

 

Time and Space Complexity 
There are several methods to calculate Geodesic distances 

between points given the distances between neighboring points. 
Most commonly Dijkstra’s algorithm is used to find the shortest 
path between each point in the data set [2]. If there are Mp points 
representing the printer gamut, and MD input points for ink 
separation, the time complexity of Dijkstra’s algorithm based on 
the Fibonacci heap algorithm becomes O(E + (Mp+M-
D)Log(Mp+MD)), where E represents the number of edges between 
the points. The number of edges varies with the data set 
characteristics and diameter of the neighborhood around each data 
point. In practice it takes around 2.5 seconds to calculate the 
geodesic distances for 2000 points on an average compuer.  
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Experiments 

Printer Gamut 
 

To evaluate the gamut complexity of the printer, two printer 
gamuts were evaluated. The first one is based on spectral 
measurements of 900 patches printed with a 7-ink printer. We 
refer to this gamut as the “realistic” printer gamut. The second 
printer gamut is based on the synthetic printer model introduced by 
Tzeng et al. [3] and [4]. The model is used to predict the spectral 
reflectance resulting from a given ink combination. The following 
equations are used to predict the reflectance: 

  R� = (R�

1/w
paper - ��,mixture)

w                                     (1)                                                

             ��, mixture  = �ci Ri� 

             �� = R�

1/w
paper - R�,i

1/w                                       
Where �i� is the reflectance of ink i at wavelength � at 

maximum concentration. This model is used to generate data 
points. This printer gamut is referred to as the “synthetic” printer 
gamut.  For 3, 6 and 9 ink models, 125, 4096 and 12000 data 
points were generated with the constraint that no more than 6 inks 
may be used at a time. 

Ink Choices 
The 7 inks used for the realistic printer gamut were Cyan, 

Magenta, Yellow, Light Cyan, Light Magenta, Black and Gray. 
For the synthetic printer gamut, spectral reflectances of 6 real inks 
were used. The inks were Orange (O), Cyan (c), Magenta (m), 
Yellow (y), Green (Gr), Violet (V) and Black (K), Light Magenta 
(LM) and Light Cyan (LC) for the 9-ink printer. Orange (O), Cyan 
(c), Magenta (m), Yellow (y), Green (Gr), Violet (V) were used 
for the 6-ink printer, and the 3-ink printer model used Cyan (c), 
Magenta (m), Yellow (y).  
 

 

Printer Spectral Gamut Intrinsic 
Dimensionality 

What are the intrinsic dimensionalities of the gamuts of the 
two printers? In terms of a linear model, Principal Component 
Analysis (PCA) provides one answer. However, in terms of a non-
linear model, ISOMAP provides a second answer. If the answers 
differ, then we can conclude that the printer gamuts bend in a way 
that is similar to the Swiss Roll example. Figures 3 and 4 compare 
how the residual variance changes with increasing dimensionality 
for both PCA and ISOMAP. If PCA shows a higher 
dimensionality for the data set than what ISOMAP finds, then we 
can conclude that the underlying structure of the gamut is a lower-
dimensional  data set. Figure 3 and Figure 4 are based on the 
realistic gamut; Figures 5 and 6 are for the synthetic gamut. 

 
The analysis shows that the printer gamuts are of lower (3 or 4 
versus 5 or 6) intrinsic dimensionality than can be determined by 
linear PCA. As a result, we expect to be able to have obtain more 

accurate ink separations using interpolation based on the distances 
between the ISOMAP-embedded locations of the reflectances.  

 

 
Figure 3: PCA residual variance for the realistic printer gamut space. 
The plot shows that the dimensionality of the 7-ink printer is around 5 
dimensions 

 

 
Figure 4: ISOMAP residual for the realistic gamut . The data shows that 
the underlying dimensionality of the gamut is around  3 .  

 

 
 

16th Color Imaging Conference Final Program and Proceedings 69



 

 

 
Figure 5: PCA residual variance for the synthetic printer gamut space. 
The scores show that the dimensionality of the 6-ink printer is around 6 
or 7 dimensions 

 

 
Figure 6:  ISOMAP residual for the synthetic gamut . The data shows 
that the underlying dimensionality of the gamut is around  4 .  

Metamerism Measure 
The RMS (root mean square) difference between two spectral 
reflectances does not necessarily represent the difference that may 
be apparent to the eye. As an alternative measure, we use the 
maximum ∆E94 of the two spectral reflectances found under 11 
different lights. The 11 illuminants used in this paper are from the 
Simon Fraser data base [5]. 

 

 

 

 

 

 

11 illumination types used for ∆E comparison 
1. Sylvania 50MR16Q (12VDC)---A basic tungsten bulb 
2. Sylvania 50MR16Q (12VDC) + Roscolux 3202 Full Blue filter 
3. Solux 3500K (12VDC)--Emulation of daylight 
4. Solux 3500K (12VDC)+Roscolux 3202---Emulation of daylight 
5. Solux 4100K (12VDC)--Emulation of daylight 
6. Solux 4100K (12VDC)+Roscolux 3202---Emulation of daylight 
7. Solux 4700K (12VDC)--Emulation of daylight 
8. Solux 4700K (12VDC)+Roscolux 3202---Emulation of daylight 
9. Sylvania Warm White Fluorescent (110VAC) 
10. Sylvania Cool White Fluorescent (110VAC) 
11. Philips Ultralume Fluorescent (110VAC) 

 

Table 1 The lights used in measuring the color variation of two 
similar reflectance spectra under different illuminants.  
 
 

Results 
 

Ink Separation Evaluation 
To evaluate how well the ink separation technique works, we 
sampled the synthetic printer gamut uniformly in ink space, 
obtaining 2300 data points as a training data set. An additional 250 
data points from inside the printer gamut were selected to 
represent the test sample. The test and training sets are disjoint.  
 
 The 250 test points are processed through the ink separation 
algorithm. The predicted ink combinations are then run through 
the printer model to predict the corresponding spectral 
reflectances. The predicted reflectances are then compared to the 
original input reflectances.   
 To evaluate the performance of the geodesic ink separation 
model, we compare its results to those obtained by doing the 
separation in linear space. Table 2 Error! Reference source not 
found.shows that there is a gain when the interpolation is based on 
the geodesic distances instead of the Euclidean distances.  
 

  Geodesic Linear 

Inks   RMS ∆E94 RMS ∆E94 

3 

min 0.0011 0.236 0.0078 1.204 

mean 0.034 3.068 0.0335 6.33 

max 0.134 8.2 0.0717 24.78 

6 

min 0 0.005 0 0.006 

mean 0.0089 2.843 0.0298 3.379 

max 0.0541 18.29 0.1339 20.45 

9 

min 0 0.004 0 0.014 

mean 0.0081 2.617 0.0179 3.051 

max 0.0487 14.1 0.1238 20.05 

 
Table 2: Ink Separation evaluation based on Geodesic location and 
linear space locations. The errors reported are the minimum, mean, and 
max ∆E94  that occur under the 11 different illuminations, and the RMS 
difference between the spectra. 
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Figure 7: Ink separation methods evaluated in ∆E94 under 11 different 
illuminations. The data above shows average ∆E94 for the 11 
illuminations 

Spectral Gamut Mapping Evaluation 

Test Data 
To test the gamut mapping algorithm, the scene reflectances from 
SFU data base were used. There are 1350 individual reflectances 
in the data base. Table 3Error! Reference source not found. 
shows the accuracy of the spectral reproduction when the proposed 
spectral-gamut mapping algorithm is used compared to the 
Hierarchical Search method in order to map the out-of-gamut 
points onto the gamut hull. The table shows that the proposed 
gamut mapping algorithms is as accurate as the hierarchical search 
algorithm or sometimes better.  

It is important to keep in mind that the hierarchal search 
algorithm is not 100% accurate either. Some of the inaccuracy of 
the hierarchical search algorithm comes from the sampling 
resolution of each ink axis. The higher the sampling resolution is 
the more accurate the model. For this paper, hierarchical search 
had 6 levels, and at each level the sampling resolution for each 
axis was 5. For instance for a 3-ink system, at each search level 
there are 53 different ink combinations to choose from. Once the 
closest ink combination is selected (Pa), 53 samples are selected 
close to the point Pa. This process is repeated for 6 levels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Isomap Hierarchical 

Inks   RMS ∆E94 RMS ∆E94 

3 

min 0.019 0.38 0.09 2.1 

mean 0.085 9.89 0.2 29.38 

max 0.2133 42.87 0.6 78.8 

6 

min 0.005 0.2288 0.03 1.9 

mean 0.1128 12.23 0.18 23.5 

max 0.416 56.74 0.45 60.2 

9 

min 0.02 1.8 0.019 1.2 

mean 0.11 10.8 0.134 18.4 

max 0.38 42.5 0.37 56.3 

 
Table 3: Performance Evaluation of the two Spectral Gamut Mapping 
Approaches. ∆E94 represents average color variation between input 
reflectance and projected input reflectance under the 11 different 
illuminations. 
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Figure 8: Comparison of the average ∆E94 performance for the 
hierarchical search versus the manifold spectral gamut mapping 
algorithm. 

Conclusion 
A spectral ink separation algorithm is introduced based on 

interpolation using the geodesic distances between neighboring 
points. A spectral gamut mapping algorithm is also introduced 
using ISOMAP manifold transformation.  

The performance of the ink-separation model was evaluated 
for both a 6-ink and a 9-ink printer using a synthetic printer model. 
The experimental tests show that the accuracy of interpolation, and 
thus of the resulting ink separation, improves if the calculation is 
done using geodesic distances. The accuracy of the technique is 
very close to the best that can be done via a long iterative search 
over all printer ink combinations.  
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