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Abstract 
Multiple illuminants with different color temperatures within 

a scene provide a complicated situation for color constancy and 
automatic white balance (AWB) algorithms in digital photography. 
This problem gets even worse in high-dynamic-range (HDR) 
imaging since a large scale of luminance information is able to be 
captured and thus it is more likely to be influenced by different 
illuminants in the scene. Under mixing lighting, a single global 
adjustment of colors may not yield a good result, since this 
approach tends to exaggerate the color difference for each 
illuminant as compared to what observed with the human eye, or 
only partially remove color cast in the image, making one lighting 
area look better while others look worse. A local auto white 
balance algorithm that adjusts colors pixel-by-pixel based on its 
local area was proposed to solve this problem. For a specific pixel, 
illumination is estimated from the color information from its 
neighboring pixels that is weighted by the spatial distance, 
luminance intensity difference and chromaticity. Experiments on 
synthetic and real images show that this algorithm performs 
significantly better than other global and local AWB algorithms 
when evaluated in terms of the accuracy with which correct 
surface object colors are estimated. 

Introduction  
In digital photography, white balance algorithms are designed 

to remove illuminants’ color casts, so that objects that appear white 
in person are rendered white in the photos. Scenes lit by multiple 
illuminants with different color temperature, for example, mixed 
lighting of indoor and natural light, often provide more complicate 
situations for auto white balance (AWB) in imaging systems. 
Human eyes are very good at judging what is white in different 
color lighting, and even locally adapting to different illuminants in 
the same scene simultaneously by saccadic eye motion. However, 
digital cameras often have great difficulties with auto white 
balance in this situation. The majority of the illumination-
estimation methods[1-5] usually calculates the average color 
temperature for the entire scene and uses it for white balance. 
While this approach is often acceptable in most cases, it tends to 
exaggerate the color difference for each illuminant as compared 
with the real-world counterpart, or only partially correct white 
balance for one illuminant, making one lighting area looking better 
while others look worse. Figure 1 shows a church lit by a warm 
incandescent light under a moonlit sky. White balance based on the 
moonlit sky brings out the warm color temperature of the artificial 
lighting. However, white balance based on the church generates a 
sky with an unrealistic blue appearance. It suggests that a single 
color balance setting is insufficient. The colors must, to some 
extent at least, be adjusted locally to account for the local variation 
in scene illumination. 

  
Figure 1. (a) white balance for the moonlit sky; (b) white balance for the 
church 

Retinex[6,7] estimates the illumination color locally for each 
pixel by making comparisons between the pixel and other 
neighboring image pixels and adjusts colors on a pixel-by-pixel 
basis. The nearby pixels are given more weight than distant pixels 
in the estimation. The “reset” operation in Retinex assumes that 
locally the most reflective surface is “white” and other pixels’ 
colors are adjusted relative to this white. This assumption produces 
the effect of strongly influencing illumination estimate by the 
colors in each pixel’s neighborhood. To improve Retinex’s 
illuminant estimation, Xiong et al.[8] integrated Retinex with 3 
dimensional spatial-edge information reconstructed from stereo 
images, in order to prohibit its local neighbouring pixels’ 
comparison across the spatial edge. While the effectiveness of 
using spatial information was demonstrated for some scenes, it is 
still difficult to identify where the illuminations’ change occur, 
since they are not always separated by spatial edges or changes in 
surface orientation. Besides, it requires stereo images derived from 
two or more images of the same scene captured at different 
viewpoints simultaneously, which is also impractical for real-life 
applications. They[9] then proposed a hybrid solution to combine 
the benefits of local and global constancy solutions, Retinex and 
SVR. Under mixed lighting, Retinex first mitigates the 
illumination difference to be more uniform by its local 
illumination estimation, followed by SVR to cancel out the 
illumination’s effect globally. 

Multiple illuminants color constancy becomes more critical in 
HDR imaging as a larger scale of luminance is able to be captured 
and thus more likely to be influenced by different lighting. For 
instance, a common scenario occurs when one is indoors and looks 
across the room and through a window to the outdoors. Traditional 
dynamic range image devices cannot capture all luminance 
information, leaving either the indoors portion of the scene too 
dark to discern or the outdoors portion of the scene saturated. This 
might explain why it has been a less serious problem for multi-
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illuminants white balance over the years. HDR imaging 
technologies have advanced so as to capture and store both indoors 
and outdoors luminance in a HDR image with limited dynamic 
range image devices using multi-exposure techniques,[10,11] or 
directly with HDR image sensors.[12,13] Therefore, different color 
temperature lighting has to be considered in HDR image rendering. 
Unfortunately, little research has been conducted to solve this 
problem. As a part of HDR color image processing and rendering 
flowchart, a local illuminant estimation and correction AWB 
algorithm was thus proposed and tested in this paper. 

Algorithms 
The assumption in human vision has been widely accepted in 

imaging research that an image is regarded as a product of the 
reflectance and the illuminances, shown in Eq. 1. 

( ) ( ) ( )yxLyxRyxI ,,, =   (1) 

where ),( yxI  is the intensity, ),( yxR  is the reflectance and 
),( yxL  is the illumination at each point (x,y). A common 

assumption for the simplicity of calculating R and L is that L 
varies slowly while R can change abruptly. A low-pass Gaussian 
filtering of the image is often regarded as the illuminaces of the 
scene. 

However, in a HDR scene, multiple illuminants lighting often 
comes with dramatic luminance intensity change, which is less 
likely caused by objects’ reflectance change. A Gaussian filter 
removes details well, but it also smoothes across the sharp edges 
where lighting change. To improve local illuminant color 
estimation, we want to preserve sharp intensity edges in the low-
passed filtering to avoid incorrect color adjustments along abrupt 
illuminant changes.  

The “white” image is thus obtained using an edge-stopping 
filter called the bilateral filter, which is first proposed by Durand 
and Dorsey[14] in their HDR tone-mapping operator. The Bilateral 
filter is an anisotropic filter, where each pixel is weighted by the 
product of a Gaussian filtering in the spatial domain and another 
Gaussian filtering in the intensity domain that decreases the weight 
of pixels with large intensity differences. Therefore, the bilateral 
filter effectively blurs an image while keeps sharp edges intact, and 
thus avoids color bleeding along sharp lighting changes caused by 
different color temperature illuminants. The pixel intensity 
calculations are performed in the log domain because the pixel 
differences directly correspond to the perceptual contrast. 

Furthermore, for a robust estimation of the illumination light, 
we can restrict our search to a range of likely illuminant pixels and 
excluded those with high saturation pixels in the calculation. 
Indeed, this way of constraining the possible estimates produces 
the best color constancy algorithms.[15] Figure 2 shows the 
Planckian locus of black-body radiators on the xy chromaticity 
diagram.[16] Finlayson[15]demonstrated that the illuminant 
chromaticities of typical light sources fall on a long thin “band” 
around the Planckian locus in chromaticity space. This means that 
we can put weights to each pixel which contributes to the 
illumination estimate according to the distance to the Planckian 
locus in xy chromaticity diagram. The nearby pixels are given 
more weight than distant pixels in the estimation. 
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Figure 2. Planckian locus plotted in xy chromaticity space 

A trilateral-like filtering was developed to incorporate the 
functions above, given in Eq. 2 and Eq. 3.  
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where k(s) is a normalization term: 
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I
s
 is the luminance intensity value for pixel s, which is 

influenced mainly by pixels that are close spatially and that have a 
similar intensity and that locate around Plankian locus in the 
chromaticity diagram. J

p
 is the pixel value for a specific color 

channel from the local area of pixel s and Js’ is its corresponding 
output values. The filtering is carried out on each color channel 
independently. ()f  is a Gaussian function in the spatial domain 
with the kernel size fσ . Ideally fσ  is specified with device 
independent coordinates such as cycle-per-degree according to the 
viewing conditions. Since they are often not available in the 
application, fσ is set to an empirical value of 1/3 of the image 
size. ()w is another Gaussian function in chromaticity diagram 
with its scale wσ  empirically set to a constant value of 0.04. ()g  
is a Tukey’s biweight function[17] (Eq. 4) in the intensity domain, 
which completely stops diffusion across edges. The trilateral 
filtering is speeded up using nearest neighbor down-sampling and 
up-sampling in the implementation. 
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After obtaining the “white” image, color adjustment is 
conducted on a pixel-by-pixel basis. 

Testing the Local AWB Algorithm 
In this section, we apply the local AWB algorithm to multiple 

illuminants HDR images. Results are compared to Gray-World 
method and Retinex algorithm to demonstrate its performance. For 
the Retinex, the iteration time is set to 1, as Xiong etc.[8,9] has 
shown that one iteration always give out the best performance for 
most scenes. 
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Synthetic Image Experiments 
Our first experiments are based on synthetic images that 

model a HDR scene with two quite distinct illuminants lighting 
different parts of the scene. We generate synthetic scenes 
composed of patches of different reflectance by randomly selecting 
reflectances from a publicly accessible database[18]. The patches are 
divided into two sections by an irregular boundary representing 
where the illumination changes. RGB values for the patches are 
calculated by using two illumination spectra, CIE A on the left, 
CIE D65 daylight on the right, and sensor sensitivity functions of a 
commercial CMOS camera color balanced equal-energy white. 
The ground-truth image is generated by correcting each 
illuminated part individually to an equal-energy white illuminant. 
Luminance of the right part is increased 1000 times to simulate a 
HDR scene.  

The top left image of Figure 3 shows the linear rendering of 
the synthetic HDR image. To indicate different color temperature 
lighting areas, the left part is increased by 1000 times in the top 
right image, with a white line demarcating the boundary between 
two illuminants. Note that this line is not included in the original 
input image. The same process is applied to all results to make it 
easier to see their performance. Comparing to the ground-truth 
image, the local AWB algorithm successfully removed color cast 
in both illumination areas. Gray-world method, as a popular global 
AWB algorithm, removes some of the bluish cast from the right 
side of the image, but introduces more warm color to the left side. 
Retinex removes some of color cast in both sides, but tends to 
over-correct and de-saturate the color patches. 

   

   

  
Figure 3. Synthetic image results. From left to right and top to bottom: input HDR image, image 

with balanced luminance and white line superimposed to indicate the illumination boundary. 

ground-truth image, Local AWB algorithm result, gray-world result, Retinex result. 

To quantitatively evaluate the results, geometric distance 
between the white balanced image and the ground-truth image is 
calculated at each pixel in rg-chromaticity (r=R/(R+G+B), 
g=G/(R+G+B)) space. The angle in degree between two color 
vectors in rgb space (b=1-r-g) is also investigated.[9] These errors 
are defined by the following formulas, where subscript ‘p’ 
indicates the result from a specific AWB method and ‘g’ indicates 
the ground-truth image. 
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Three statistics are computed on the distribution of errors 
across all the pixels in an image: the median, the RMS (root mean 
square) and the mean of the 99.9 percentile of the largest errors, 
denoted MMax. In contrast to a single maximum error, MMax is 
more robust to exclude outliers. 

The error results are shown in Table 1. The local AWB 
algorithm has significantly outperformed Retinex and Gray-world 
method in color accuracy. The MMax distance and angular errors 
of local AWB are less than 50% of those from Retinex and Gray-
world. Other statistics also illustrate the same trend. It is 
interesting to find out that Gray-world performs acceptably for the 
median statistics but much worse in MMax and RMS. The reason 
becomes obvious, since the bright part is dominant in the Gray-
world calculation for HDR images, the gray-world algorithm 
correctly color adjusts for the bright illumination while making the 
dim illumination worse. 

Table 1: Comparison for the synthetic image of MMax, RMS and 
median errors measured on a pixel-by-pixel basis between the 
ground-truth image and the processed images by three AWB 
algorithms 

Distance (* 102) Angular  
MMax Med RMS MMax Med RMS 

Local AWB 7.20 2.32 2.73 7.86 2.49 3.14 
Retinex 16.37 3.94 5.33 20.83 4.94 6.62 
Gray-world 13.72 2.68 7.65 19.10 2.57 9.42 
 
Real Image Experiments 

The local AWB algorithm was then evaluated using real-
world HDR images. First we built up a multiple illuminants HDR 
scene in the laboratory. The advantage of the laboratory scenes is 
that it is possible to obtain a ground-truth image with which to 
evaluate the white balance color accuracy errors. Outside the 
laboratory, it is difficult to make enough measurements of the 
illumination distribution to obtain the ground-truth image. We 
have to evaluate the result images by a direct comparison against 
the corresponding real-world counterparts; otherwise, we have to 
count on the prior experience of the scenes.  

The laboratory scene (Figure 4), designated Lab Scene, has 
two distinct illuminations similar to those found indoors and 
outdoors, where the left part was illuminated by bright 
incandescent lights and the right part was under dim daylight 
lighting in a light booth. They are carefully separated so that the 
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illuminations’ color temperature was approximately uniform in 
each individual part. Two Macbeth Color Checkers were included 
under each illumination. They provided “white” information to 
generate the ground-truth image, which was obtained by manually 
white balancing for each illumination. The luminance range of this 
scene is from 1 cd/m2 to 2000 cd/m2. This scene was photographed 
using Canon 400D digital camera with different shutter speeds 
ranging from 1/250 to 1 second. All captured images were stored 
with 12-bit raw data for the construction of HDR images with 
camera response curve using the multiple exposure combination 
method proposed by Robertson et al.[11]  

The input HDR image, ground-truth image and white balance 
result images by Local AWB algorithm, Retinex and Gray-world 
method are shown in Figure 4. To present these HDR images in the 
paper, all images except the Retinex one were rendered with HDR 
tone-mapping algorithm iCAM06,[19] and since Retinex is claimed 
to be an tone-mapping operator as well, no further rendering 
method was applied to its result here. All algorithms have 
successfully removed the yellowish cast in the incandescent 
lighting, while the local AWB algorithm is most effective for 
removing the bluish cast in the daylight lighting. The result of the 
local AWB algorithm is more close to the real experience when 
observed with the human eye. 

   

   
Figure 4. Lab Scene image results. From left to right and top to bottom: input 
HDR image with incandescent lights and daylight illumination, ground-truth 
image with manually white balance for individual illumination, Local AWB 
algorithm result, Retinex result and Gray-world method result. 

The numerical results presented in Table 2 show that Retinex 
and Gray-world method perform with relative similar accuracy for 
this image, while the local AWB algorithm outperforms each of 
the others taken individually. 

Table 2: Comparison for the Lab Scene of MMax, RMS and 
median errors measured on a pixel-by-pixel basis between the 
ground-truth image and the processed images by three AWB 
algorithms 

Distance (* 102) Angular  
MMax Med RMS MMax Med RMS 

Local AWB 15.19 1.89 6.17 19.36 2.36 8.07 
Retinex 21.07 2.20 6.54 23.95 3.27 8.37 
Gray-world 18.39 1.65 7.19 23.29 2.31 9.38 

 
We designed a second HDR scene (Figure 5) to incorporate a 

typical multi-illuminant scenario of being indoors in a room with a 
window to the outdoors. The indoor objects are lit with a warm 
incandescent table lamp, while the outdoor ones are lit by sky blue 
light. Note that natural scenes often have mixed lighting conditions 

instead of two distinct illuminations. For example, the wall under 
the window is illuminated by the mixed light from indoors and 
outdoors simultaneously. Even for the outdoor objects, the 
buildings are lit with higher color temperature lighting than the 
concrete road since they are in the shadows. Comparing to the Lab 
Scene, it is more challenging for white balance algorithms. The 
HDR image was generated with the same multiple-exposure 
technique stating above.  

Figure 5 shows the input HDR image and white balance 
results from three algorithms. Again, to present HDR images on 
the paper, we applied iCAM06 HDR tone-mapping algorithm to 
the images except the Retinex one. The result image of the local 
AWB algorithm has a very natural appearance in both indoors and 
outdoors. Retinex has a strong local effect by de-saturating color 
surfaces, for instance, turning the blue sky completely white. The 
Gray-world method tends to have a balance between indoors and 
outdoors; however, the indoor wall under the window becomes 
green and the outdoor buildings have a blue cast. Intrinsically the 
Gray-world method cannot solve the white balance problem under 
mixed lighting conditions. 

   

  
Figure 5. Window scene and results. From left to right and top to bottom: 
input HDR image with indoor incandescent lights and outdoor daylight 
illumination, Local AWB algorithm result, Retinex result and Gray-world 
method result. 

Conclusions and Discussions  
HDR images are often of multiple illuminations, which is a 

challenge for automatic white balance in HDR image processing. 
Global AWB algorithms have an intrinsic limitation to have 
unsatisfied white balance for each individual lighting part, leaving 
uncorrected color cast in one part or several parts. Retinex is one 
method that makes local adjustments for the illumination, but it 
tends to over correct the color cast, generating unrealistic de-
saturation and halo effects. We have proposed a local AWB 
algorithm in this paper to solve this problem. The Illuminant is 
locally estimated from the color information from its neighbor 
pixels that is weighted by their spatial distance, intensity difference 
and chromaticity distance from the Plankian locus in chromaticity 
diagram. Experimental results from synthetic images and real 
images demonstrated that the local AWB algorithm is effective to 
remove the color cast under different illuminations by generating 
natural appearance. It outperformed Retinex and Gray-world 
method in our test.  
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We have not addressed the problem of incomplete chromatic 
adaptation under different color temperature illuminations; instead, 
we assumed that we have a complete white balance for each 
individual lighting area. However, this assumption is probably not 
true from the perceptual experience. For some situations, we may 
prefer to leave the color temperatures as is; on the other hand, 
some situations may not even have a truly "correct" white balance, 
and will depend upon where we focus on or where color accuracy 
is most important. Psychophysical experimental data will be very 
helpful in the research of multi-illuminant color constancy. 
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