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Abstract
We show that conjoint analysis, a popular multi-attribute

preference assessment technique used in market research, is a
well suited tool to simultaneously evaluate a multitude of gamut
mapping algorithms with a psycho-visual testing load not much
higher than in conventional psycho-visual tests of gamut mapping
algorithms. The gamut mapping algorithms that we test using
conjoint analysis are derived from a master algorithm by choos-
ing different parameter settings. Simultaneously we can also test
the influence of additional parameters like gamut size on the per-
ceived quality of a mapping. Conjoint analysis allows us to quan-
tify the contribution of every single parameter value to the per-
ceived quality.

Introduction
Rendering of a color image in the presence of device limi-

tations, also called gamut mapping, is a fundamental problem in
digital color reproduction. Despite being a classical topic, for an
overview see Morovic [1], gamut mapping is still an active area of
research. Lately, research on gamut mapping algorithms (GMAs)
has focused on image dependence [2, 3] and spatial mapping al-
gorithms [4, 5, 6]. A very important part in the development of
GMAs is their evaluation. Here human perception is the ulti-
mate judge that determines which of the different competing algo-
rithms is the most effective. Psycho-metrical scaling is a common
method to measure image quality and image differences [7]. The
quality of GMAs is typically measured with psycho-visual tests
that involve paired comparisons. In a paired comparison a test
person is shown an original image and two images obtained from
different mapping algorithms. The test person has to identify the
mapped image perceived to better represent the original. In or-
der to improve the quality and comparability among studies, the
technical committee of CIE published guidelines [8] on how to
conduct psycho-visual tests assessing the quality of GMAs.

Here we use psycho-visual tests not only to compare a few
final GMAs but already in the development stage of mapping al-
gorithms. Our approach builds on the insight that gamut map-
ping can be seen as a highly parametrized problem. There are
many, sometimes competing parameters relevant for gamut map-
ping: first of all the preservation of hue, lightness and saturation.
Important parameters for image dependent algorithms are spatial
image information and parameters like local contrast and smooth-
ness gradients. Also, when realizing a GMA we have a choice of
working color space, mapping direction, compression type. We
use psycho-visual tests—paired comparison—to determine an op-
timal parameter setting. The data elicitation phase of our test is
the same as in traditional psycho-visual tests used to compare dif-
ferent GMAs. In particular, the number of paired comparisons
per test person is not larger, neither is the number of test persons

significantly larger, whereas the potential number of mapping al-
gorithms that can be compared is much larger. The difference
to traditional psycho-visual tests used to compare GMAs is in the
way how we analyze the elicited data. We are using conjoint anal-
ysis that essentially fits a linear model [9] to the data by assigning
a part-worth value to every parameter level. The value of a pa-
rameter setting—besides the algorithm’s parameters this can in-
clude additional parameters like gamut size—is then the sum of
the part-worth values of the parameter levels used. The number of
potential parameter settings that can be compared using conjoint
analysis is determined by the number of levels tested for each pa-
rameter, i.e., it is the product of these numbers which can be quite
large and easily exceed 1000.

We should point out that we are not the first who systemati-
cally include observer experiments in the development of GMAs,
see for example the work done by Kang et al. [10]. Multivariate
analysis techniques also have been used in image processing to
gauge the importance of parameters [11].

This paper is organized as follows. In the next section,
“Mapping Algorithms”, we describe the parameters that we have
studied and evaluated for gamut mapping. Section “Conjoint
Analysis” reviews a conjoint analysis technique which was de-
veloped in [9] by extending Thurstone’s law of comparative judg-
ment to the multi-attribute case. In Section “Results” we present
and discuss two user studies that we conducted to evaluate the
parametrized GMA. We conclude the paper with a discussion of
our results.

Mapping Algorithms
We consider finding a good GMA as a parameter optimiza-

tion problem, i.e., we consider one master algorithm with free
parameters for which we want to determine optimal values from
psycho-visual tests. The master algorithm is quite simple, it
maps any color point in the source gamut along a line segment
connecting the color point and a focal point into the destination
gamut. We consider also additional parameters that are not
parameters of our master algorithm, but whose variation may
affect the perceived quality of the mapping. We are especially
interested in how the shape of the destination gamut affects the
quality of the mapping. Hence we considered the following
additional parameters: the size of the destination gamut as well
as small shifts and rotations of the destination gamut. Shifts and
rotations of destination gamuts turned out to be not so important
parameters. Thus in a second user study we replaced them by two
other parameters, namely shift of the focal point (Color/Density
shifts) and hue rotations. In the following we summarize all the
parameters that we have studied. Note that we always used sRGB
as source gamut, i.e., we did not consider the source gamut as a
parameter.
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Compression. The compression parameter describes how
the mapping along the line segment is done. We studied four dif-
ferent strategies: linear compression (lin), clipping (clip) and two
sigmoidal compression algorithms (sig1 and sig2). The sigmoidal
compression strategy maps a color point towards the focal point
by a scale factor 0 � β � 1 calculated as follows

β � α �D � tanh

�
S
D
� tanh�1

�
X
S

��
��1�α� � X �D

S
�

where X is the distance of the focal point to the color point that
needs to be mapped, S is the distance of the focal point to the
source gamut boundary, and D is the distance of the focal point to
the destination gamut boundary. The two sigmoidal compression
strategies differ only by the choice of α which is 0�5 for sig1 and
0�8 for sig2.

Detail enhancement. As Zolliker [4] has shown, enhancing
details can improve the quality of the mapped image essentially.
Detail enhancement is a procedure independent of the master al-
gorithm. Actually, it is technically more involved than the master
algorithm itself. But we can interpret it as a parameter of the mas-
ter algorithm in the sense that we can apply detail enhancement
in varying degrees to the results obtained from the master algo-
rithm. We use the detail enhancement method described in [4]
with different levels of enhancement, namely 0�5, 1, and 1�5, re-
spectively. The levels of the detail enhancement parameter are
E1, E2, E3, and N which means that no detail enhancement was
applied.

Hue preservation. Hue preservation is considered an impor-
tant aspect in gamut mapping. We test its importance in two ways:
one is to use two different working color spaces CIE-LAB [12]
and IPT [13]. CIE-LAB is known to preserve hue not accurately,
especially in the blue region, whereas IPT was designed to pre-
serve hue. The other way is to add specific hue shifts to the im-
age. Thus the first two levels of this parameter describe the work-
ing color space used for our master algorithm (called LAB, IPT).
Two more parameter levels (called IPT+ and IPT-) add �0�1 ra-
dians or �0�1 radians, respectively to the image. Here IPT was
used as working color space.

Gamut size. To gauge the importance of the destination
gamut we also tested a parameter that describes the size of the
destination gamut. This is actually not a free parameter of our
master algorithm, but we decided to include it, because it allows
us to estimate the relative importance of the destination device
gamut size compared to the free parameters of the master algo-
rithm. We tested four different destination gamuts. The smallest
was ISONewspaper, the largest ISOCoated. The two remaining
gamuts were created from ISONewspaper and ISOCoated gamut,
as weighted average with weights 2

3 and 1
3 , and 1

3 and 2
3 , respec-

tively. We refer to the levels of the gamut parameter as sml, med1,
med2, and lrg, respectively.

Color/Density shifts. Another free parameter of our master
algorithm is the choice of focal point. The idea is to produce well
defined color and density shifts in the mapped image by varying
the focal point. A natural choice for the focal point is close to the
mid point of the gray axis in the destination gamut. In our case
we choose the mid point of our smallest gamut, i.e. �59�0�0� in
LAB space. We also used focal points shifted along the gray axis
by vectors �5�0�0� and ��5�0�0� and shifted in the color plane by

�0�3�0�, �0��1�5�1�5
�

3�,�0��1�5��1�5
�

3�. We refer to the six
levels of this parameter in the order we have described them as D,
D+, D-, a+, a-b+, and a-b-, respectively.

Gamut shifts. This parameter describes a shift of the des-
tination gamut. We considered six levels with shifts identical to
those of the ’Color/Density shift’ parameter. We refer to the lev-
els of this parameter in the order that we have described them as
G-D, G-D+, G-D-, G-a+, G-a-b+, and G-a-b-, respectively.

Gamut rotations. Another parameter that we considered
is a rotation of the destination gamut. The first two levels are
identical to the levels of the ’Hue Preservation’ parameter, namely
the use of CIE-Lab and IPT color space. Two additional levels
describe rotations of the destination gamut in the IPT in IPT space
by �0�1, 0, �0�1 radians. We refer to the levels of this parameter
as G�LAB,G� IPT�, G� IPT , G� IPT�.

Conjoint Analysis
Conjoint analysis comprises a plenitude of techniques to dis-

aggregate measurements on a parametrized domain. We call a
domain parametrized, if it is given as a Cartesian product A �
A1� � � ��Am of parameter sets A1� � � � �Am. Every element of A
is a vector �a1 i1 �a2 i2 � � � � �amim�, where aki � Ak. The elements aki
are called parameter levels. One goal of conjoint analysis is to
determine how much every parameter level contributed to the ob-
served outcome of a measurement—this is called the part-worth
of the parameter level. One particular form of measurements that
we want to consider here are paired comparisons. In a paired
comparison from two given elements a�b � A one is chosen to be
better than (or preferred to) the other.

In [9] a conjoint analysis technique was developed as an ex-
tension of Thurstone’s method [14] of comparative judgment to
the multi-parameter (conjoint) case. The extension entails to ap-
ply Thurstone’s method for each parameter to compute an ini-
tial set of part-worth values. Then rescaling the values makes the
scales of the different parameters comparable. The overall value
of an object in A (in our case an incarnation of our master GMA)
is obtained by summing up the re-scaled part-worth values of the
parameter levels present in the object.

Thurstone’s Method
Let us briefly recapitulate Thurstone’s method [14] of com-

parative judgment that is often applied to compare GMAs. The
method is described in detail in [7].

Given is a finite set of stimuli, e.g. GMAs. According
to Thurstone’s method, the frequency of preferring stimulus i to
stimulus j �Fi� j� is an indirect measure of the distance in quality
of the stimuli i and j. This distance is the difference in the ex-
pected (quality) values of i and j. We assume that quality values
Si of the stimuli are uncorrelated, normally distributed random
variables with expectation μi and equal variances, i.e. σ2

i � σ2.
These assumptions will be supported by the test that we describe
later. By the properties of normal distributions, the differences
ΔSi j � Si�S j are also normally distributed with expected values
μi � μ j and variances 2σ2, so ΔSi j � Φ�1�P�i � j��, where Φ
is the cumulative distribution function of a normal distribution
with variance σ � � 2σ2. In this case the quality value differ-
ence μi � μ j equals

�
2σΔSi j , since the variance of the distri-

bution has doubled. We estimate P�ΔSi j � 0� by the observed
Fi� j. Having a matrix of probabilities we can calculate μi � μ j

16th Color Imaging Conference Final Program and Proceedings 39



for all i� j � 1� � � � �n where i �� j. We can assume without loss of
generality that the average of the quality values μ is 0. Hence we
compute μi for i � 1� � � � �n.

1
n

n

∑
i�1

�μi�μ j� � μi� 1
n

n

∑
j�1

μ j � μi�μ � μi

We can see, that σ does not change the ratio of quality value dif-
ferences. Hence a natural choice of σ is σ � 1.

In some cases we do not have a full frequency matrix since
not all stimuli have been compared with each other. Hence we
cannot apply Thurstone’s method directly. We fix this by first
applying the method to pairs of stimuli that have been compared,
and then we use linear regression to expand our results to all pairs
of stimuli.

The multi-parameter case
We now assume that our stimuli come from a structured set,

i.e., every stimulus is an element of a set A� A1� � � ��Am, where
the Ak are finite parameter domains that describe the stimuli. Pref-
erence of one stimulus to another is measured by paired compar-
ison. To apply Thurstone’s method directly to A we need a large
number of paired comparisons since the set A typically is large,
i.e., 	A	� 	A1	 � � � � � 	Am	. Furthermore, we aim for more informa-
tion here, namely, if possible we want to measure the contribution
of each parameter level to the observed overall quality of a stim-
ulus. Therefore we use a decompositional approach. First, we
compute quality values for the levels of each parameter A1� � � � �Am

using Thurstone’s method with a probability matrix created as fol-
lows: for each parameter Ak, if �a1� � � � �am� � A was preferred to
�b1� � � � �bm� � A, then we interpret this as ak was preferred to bk
if ak �� bk.

Note that when applying Thurstone’s method directly we use
σ � 1. Now let sk1 � � � �sknk

be the quality values computed using
Thurstone’s method for every stimuli Ak with levels ak1 � � � �aknk

.
To get the quality value of a stimulus we sum up all the quality
values (part-worth) of the parameter levels present in the stimulus,
i.e., we make the assumption of a linear model. But in order to
compare the quality values for different parameters we have to
normalize them. We derive a normalization procedure from the
following assumption.

Assumption. For any parameter Ak the quality values
sk1 � � � �sknk

are normally distributed with variance σ2
k1 and ex-

pected value 0 drawn from another normal distribution with ex-
pected value 0 and variance σ2

k2. Hence, scale values for the levels
of parameter Ak are drawn from the normal distribution Nk with
variance σ2

k1 � σ2
k2 and expected value 0 (as the convolution of

two normal distributions with expected value 0 and variances σ2
k1

and σ2
k2 respectively).

The value σ2
k1 is equal for all sk j

and will be chosen such
that comparable quality values for different parameters, i.e., the
values σk1sk j

will be comparable. As we compute quality values
from paired comparison on stimuli level, the stimuli quality values
by our assumption all are drawn from the distributions Nk�k �
1 � � �m. Hence all these distributions should be the same, i.e., the
value σk1 �σk2 is independent of k � 1� � � � �m. Without loss of
generality we can assume that σk1 �σk2 � 1 for k � 1� � � � �m. In
the following we fix the parameter k and drop it from the index.

We can estimate σ2 from the re-scaled observed quality values
σ1ΔSi j by using an estimator of the standard deviation, i.e.,

σ2 � σ1

����∑ni
i�1 ∑

nj

j�1 ΔSi j
2Fi� j

2∑ni
i�1 ∑

nj

j�1 Fi� j

Given that ΔSi j � 0 and because of σ2
1 �σ2

2 � 1, we get:

σ1 �
1�

1�
∑ni

i�1 ∑
n j
j�1 ΔSi j

2Fi� j

2∑ni
i�1 ∑

n j
j�1 Fi� j

Now for the fixed parameter k we re-scale the values sk1 � � � � �sknk

computed by Thurstones method by the estimated value of σ1k��
σ1� to normalize them. The normalized quality values of the pa-
rameter levels are our part-worths that we assume to contribute
linearly to the quality of a stimulus, i.e., the quality value of a
stimulus �a1 j1

� � � �amjm
� � A is ∑m

k�1 σk1sk j
which is the sum of

the part-worths of the parameter levels present in the stimulus.

Error analysis
We estimated errors of our part-worths in the following

ways.
Linear regression. Note that we can treat any comparison

of stimulus i and stimulus j as an independent Bernoulli trial with
probability of success (i is preferred to j) equal to p. We can
estimate p by Fi� j, as Fi� j converges to p when the number of
trials goes to infinity. For a finite number of trials as in our case
the standard deviation of a Bernoulli trial is estimated as

σ �

�
Fi� j�1�F1� j�

mi j

where mi j is the number of comparisons of items i and j. To
compute the errors of the part-worths from the frequencies, we
use error propagation.

Error estimation. We also computed errors experimentally.
To compute the experimental error we divided the paired compar-
ison randomly into two groups. For each group we computed the
part-worths individually. We repeated this process several times
and averaged the absolute difference of the results for every part-
worth, i.e., every level of every parameter. This average provides
us with an experimental error. Similarly we computed experi-
mental errors by dividing images into groups and by dividing test
persons into groups.

Data Assessment
We conducted two studies which we refer to as “Symposium

test” and “EMPA test”. The first test took place at the 2008 Color
Management Symposium in Munich, and the second test was con-
ducted at our institute (EMPA). In the second test we replaced the
additional parameters destination ’Gamut shift’ and ’Gamut ro-
tations’ by the master algorithm parameter ’Color/Density shifts’
and ’Hue preservation’, otherwise the set-up of the tests was the
same.

Test procedure. For every paired comparison a participant
of our test was shown an original image and two images mapped
with different parameter settings on a LCD screen. The original
image was presented in the upper half of the screen and the two
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Figure 1. Test application: user interface.

mappings below the original side by side, see Figure 1. The two
mappings were chosen at random from our parameter space. In
the ’Symposium test’ we used the constraint, that levels of ’Gamut
size’ in compared images can differ by only one consecutive level
(in the natural order) since larger differences in gamut size es-
sentially determine the choice. The test person who participated
in our tests had to choose the mapped image that reproduces the
original better. For their choices the test persons used a mouse to
click on the corresponding image. If no difference could be seen,
the original had to be selected in order to avoid a forced choice.

Monitor. For the test we used 24” Eizo CG 241W and 22”
Eizo CG 220 LCD monitors calibrated to show sRGB correctly
with a white point set to 6500 Kelvin. The ambient illumination
measured in the middle of the switched off monitor was at 40 lx.
Monitor flaps around the screen prevented flare. The monitor’s
background was set to a neutral gray.

Test Images. The image set included the obligatory ”Ski”
image that is specified by the CIE guidelines. To average out a
judgment bias due to image content, a wide range of scenes, in-
cluding 97 different images, was used in the experiment. In addi-
tion to a set of ISO test images, they were taken from royalty free
libraries as well as from private stock . For each image 1536 map-
ping combinations were possible, resulting from the 5 parameters
with a total of 22 levels. All images had a resolution of 400�600
pixels or 400�400 pixels on the 96 dpi screen which resulted in
8�5�12�5 cm or 8�5�8�5 cm sized images on screen.

Test persons. Test persons for the first test were recruited
from participants of the 2008 Color Management Symposium in
Munich who were mostly color experts and participated volun-
tarily. Each test person had passed the Ishihara test for color de-
ficiency. We had 70 test persons participating in our study who
each did 50 paired comparisons, resulting in a total of 3500 com-
parisons. The participants of the second test were mostly EMPA
employees. Each test person had passed the Ishihara test for color
deficiency. We had 13 test persons participating in our study who
each did between 50 and 200 paired comparisons, resulting in a
total of 2100 comparisons.

Results
In a first step we computed part-worths for all the different

parameters individually. To ensure, that the obtained part-worths

are meaningful, we tested the following two assumptions which
underlie our computations:

(1) The scale values for all levels of a given parameter are un-
correlated, normally distributed and have the same variance.

(2) Linear Model, i.e, the quality value for a parametrized
stimulus—in our case an image—can be obtained by sum-
ming up the part-worths of the parameter levels present in
the stimulus. This essentially means that the part-worths for
the different parameters are uncorrelated.

Mosteller’s test. We used Mosteller’s test to test the assump-
tion on the parameter level that the part-worths are uncorrelated,
normally distributed variables with equal variances. A descrip-
tion of Mosteller’s test can be found in [7] or [15]. Results are
presented in Table 1. All parameters passed the test at a signifi-
cance level α � 0�1.

Mosteller χ2�α � 0�1

Symposium test
Gamut Rotation 2.4 6.3
Gamut Shift 11.2 16.0
Compression 7.7 6.3
Detail Enhancement 2.8 6.3

Empa test
Hue preservation 3.6 6.3
Compression 2.3 6.3
Color/Density 14.7 16.0
Gamut Size 7.3 6.3
Detail Enhancement 5.6 6.3

Table 1. Mosteller’s test for parameters compared to χ2 with
significance level α � 0�1

Linear Model. We tested the linear model assumption by
testing preferential independence of pairs of parameters. Let A1
and A2 be two parameters, let C � A1 � A2 be their Cartesian
product, and let c1� � � � �ck be the levels of C. We compute part-
worths for c1� � � � �ck in two ways. First, we compute part-worths
as described in Section “Conjoint Analysis” for all levels of the
parameters A1 and A2. For every level ci � �ai1�ai2� with ai1 � A1
and ai2 � A2 we add scale values for ai1 and ai2, getting results
s1� � � �sk. Second, we apply Thurstone’s method directly to the
combined parameter C. We rescale the scale values as described
in Section “Conjoint Analysis”. We denote the results as s�1� � � �s

�

k.
If the parameters are additive (preferentially independent), then
we should get si 
 s�i. We test a null hypothesis that si � s�i for all
i � 0� � � �k by using a χ2 test with the following test statistic:

χ2 �
k

∑
i�1

�si� s�i�
2

σ2
i �σ �2

i

�

where σi and σ �

i are error estimations computed by linear regres-
sion from observed frequencies. The null hypothesis postulates
that the test statistic is approximately χ2 distributed with k� 1
levels of freedom.

In both tests we observe no significant correlation between
any parameters, except for the combination ’Gamut-Size’—
’Density/Color’ and ’Gamut-Size’—’Gamut-Shift’, where a
small correlation was found. However more data is needed to
allow a more detailed conclusion.
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Discussion
Here we demonstrate how the computed part-worths can be

used to answer questions like: What is the relative importance
of the different parameters? Which levels of the parameters are
most preferred? Which preferential dependencies exist among the
parameters?

Importance of parameters. Importance of parameters de-
scribes how much each parameter contributes to the quality value
on the stimulus level, i.e., the combination of all parameters. Two
methods are often used to calculate the importance of parame-
ters. The first one considers the largest difference between the
part-worths within the parameters. The second one uses the stan-
dard deviation of the part-worths within the parameters. Note that
for both methods the computed importance depends on the lev-
els chosen for the parameters, e.g., if we choose levels for a pa-
rameter that hardly can be distinguished, then the importance of
this parameter will be low, while it could be high for a different
choice of levels. Here we applied the second method. The im-
portance of the different parameters is shown in Table 2. In this
table we also present the standard deviation σΔE of ΔE (distance
of the transformed image and the original, averaged over the im-
ages). We calculated ΔE for each parameter taking default levels
of other parameters ( med2, sig2, D0/G-D0, IPT/G-IPT, loc1) and
computing the difference between the transformed image and the
original one. Note that in general the importance of parameters
correlates with the average difference ΔE, with exception of the
’Details Enhancement’ parameter, which shows the smallest ΔE
despite of its medium importance. This is not surprising, as lo-
cal contrast conservation can not be measured by a global color
distance measure such as ΔE.

Rank Parameter Importance σΔE

Symposium test
1 Gamut Size 0.572 3.36
2 Compression 0.187 1.46
3 Detail Enhancement 0.130 0.23
4 Gamut shift 0.074 0.45
5 Gamut rotation 0.037 0.21

EMPA test
1 Gamut Size 0.473 3.36
2 Color Density 0.161 2.12
3 Detail Enhancement 0.150 0.23
4 Compression 0.131 1.46
5 Hue preservation 0.085 0.61

Table 2. Importance of parameters (scaled such that sum is 1)

The gamut size is the most important but not the only de-
ciding parameter. In Figure 3 we can see, that there are no large
gaps between successive quality values for all the 1536 parame-
ter settings that we have tested. This means that preferred levels
of other parameters can compensate for a samller gamut. Note
that a Gaussian inverse cumulative distribution is a good approx-
imation of the shown experimental curve in agreement with our
model assumptions.

Most preferred levels. Figure 2 presents part-worths for all
parameter levels. Preferences concerning the gamut size are as
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Figure 3. Sorted scale values for algorithms, the Symposium test

expected, the larger the gamut, the higher is the perceived qual-
ity of the image. Clipping emerges as the best method of com-
pression. Its disadvantage of loss of details in saturated colors
is compensated, because part of the details are reconstructed by
the ’Details enhancement’ parameter for all but the N-level. This
result confirms, that saturation is an important factor in gamut
mapping. This is also supported by the high importance of the
gamut size parameter. As expected linear compression performs
worst. The parameter ’Detail enhancement’ shows a strong pref-
erence for higher enhancing factors. The gain between 1 and 1�5
is smaller than those between 0 and 0�5 or 0�5 and 1. This indi-
cates that there is an upper limit to detail enhancement, but the
maximum may be beyond the 1�5 setting. For the ’Color/Density
shifts’ we would expect a setting on the neutral axis to be most
preferred. This is true as all images with color shifts perform
worse than the two preferred settings D0 and D-. This indicates
that the D- setting is closest to ideal setting of the focal point.

The part-worths are similar for the parameters that were
tested in both tests. In the EMPA test ’Details enhancement’
seems to be slightly more important compared to compression.
Also, in the EMPA test the parameter Color/Density, not present
in the Symposium test was quite important, which means that the
other parameters contributed less to the general result.

Parameter inter-dependencies. Testing the linear model
showed that there is no need to use a model with combined at-
tributes levels.

Error analysis. We did not notice a large difference be-
tween the experimental error computed by randomly dividing the
paired comparisons and the error calculated by linear regression.
The experimental error computed by randomly dividing the im-
ages however is notably larger. This suggests that it is worthwhile
to develop algorithms based on individual image properties. In
this experiment we had not enough data to conduct a more de-
tailed analysis in that direction.

Conclusions
We showed that conjoint analysis can be a useful and effi-

cient method to gauge the importance of gamut mapping param-
eters for the perceived visual image quality. Our research con-
firmed a few known results about level preferences, e.g., large
gamuts preferred over small ones. The real strength of the method
however is, that such a multi-parameter study allows to compare
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Figure 2. Part-worths for all parameter levels. The red graph (not filled) shows results for the Symposium test, the green (filled) one for the EMPA test.

the importance of different levels across different parameters. For
example we consider noteworthy that the working color space is a
surprisingly insignificant parameter and parameters like compres-
sion or detail enhancement are more important. This probably
means, that it is more interesting to focus research on the latter
parameters than improving the working color space. Another im-
portant finding is that in some cases a good selection of GMA
parameter levels can compensate for limited gamut size.
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