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Abstract 
One of the goals of color appearance models is perceptual 

uniformity. In a perceptually uniform space, 1 ΔE difference 
between two colors would have similar magnitude visually 
regardless of the hue, chroma, or lightness of the colors being 
compared.  In reality, there can be significant differences in 
perceived magnitude, resulting in modified ΔE metrics such as 
ΔE

94
 and ΔE

2000
. This paper proposes a method for improving 

existing expressions for CIELAB by modifying the matrix 
converting LMS->XYZ and the coefficients in CIELAB. 

Introduction 
The intent of the development of CIELAB was to create a 

color space that was more perceptually uniform than that of 
CIEXYZ.  In theory, this would mean that equal Euclidean 
distances in this space between two colors would indicate 
equivalent magnitude of perceived difference regardless of 
direction or region of color. In reality, CIELAB has been far from 
achieving this goal when such Euclidean distance (known as ΔE) 
is used, requiring the development of non-Euclidean distance 
metrics such as ΔE94 and ΔE2000.  Note that for chromas of 
magnitude 100, the correction to ΔE94 in the direction of chroma is 
a reduction by a factor of 5!  

Color order systems such as Munsell were used to optimize 
and validate CIELAB and is still used to validate more recent 
CAMs. Since the degree of agreement between CIELAB and 
Munsell appears closer than between CIELAB and these more 
recent non-Euclidean metrics, we shall consider whether the 
assumptions for using Munsell to confirm or optimize CAMs is 
correct. 

This paper is an interim report to: 
 
1) Propose a new interpretation and optimization of XYZ in 

relation to the cone responses LMS 
2) Combine this approach with modified coefficients in 

CIELAB to achieve the original goal of CIELAB, which 
was to create a simple, uniform perceptual color space 
where differences of 1 ΔE have similar magnitude of 
visual impact 

Background 
We begin by constructing a model for the human observer 

analogous to the construction of a digital camera.  We assume that 
the eye and brain comprise of RGB detectors (the cones) with 
linear response functions which are subsequently processed by 
circuitry and signal processing: 

We will now propose a physical interpretation to XYZ, 
namely the sensation of red, gray, and blue in the brain.  This 
corresponds well to the historical definition of CIELAB as well as 
other color opponent models, i.e. L*(Y) based on gray only, 
a*(X,Y) which is calculated from red vs. gray, and b*(Y,Z) which 
is calculated from gray vs. blue.   

 
We note that the inverse of matrices for converting XYZ-

>LMS, such as Hunt-Pointer-Estevez, can be used to convert 
LMS->XYZ.  Since LMS (the cone response of the eye) is the 
basis for color matching, we may regard the conversion of LMS-
>XYZ as an LMS “mixing” or “cross-contaminating” 
transformation, which results in XYZ, the actual final sensation of 
color in the eye+brain system. 

We will postulate that inter-channel mixing of LMS to XYZ 
is directly related to color differentiation, we will endeavor to 
optimize the conversion of LMS to XYZ based on empirical data 
extracted from order systems such as Munsell. 

 

Optimization of LMS->XYZ via Equalization of 
Perceptual Differences 

 
The conversion of  LMS->XYZ is essentially a problem with 

6 variables (i.e. the amount of mixing of 2 channels with each of 
the primary channels).  The conversion matrix is constrained by 
the requirement that the values of XYZ are equal for an equal 
energy spectrum: 
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The subscripts i=1,2,3 denote X,Y,Z while j=1,2,3 denotes 

L,M,S.  The mij coefficients therefore indicate the mixing of L,M, 
and S into channels X,Y, and Z.  For example, m12=mXM indicates 
the mixing of medium wavelength sensitivity cone M into the X 
“red” sensation in the brain. If no mixing occurs, i.e. if mij =0 for 
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i≠j, then L,M, and S would map directly to X,Y, and Z, which of 
course is not the case 

The improved determination of the amount of 
positive/negative inter-channel mixing can be accomplished by 
defining a variable function converting LMS->XYZ->CIELAB via 
an adjustable LMS->XYZ matrix.  This adjustable version of 
CIELAB can be used to calculate the ΔE differences between 
adjacent colors defined in the Munsell color ordering system as 
well as any other ordered color systems (COS).  

In order to calibrate the calculations for visual differences, we 
will assume that the simplest metric for the most simple range of 
colors is correct, i.e. L* for a series of white/gray/black colors.  
This has already been confirmed by comparing the series of 
Munsel grays with L*, as shown in figure 10-6 of Fairchild’s 
Color Appearance Models. 

Since the matrix defined above is invariant with regards to 
white, the values of L* for neutral colors will not change with 
optimization of the matrix.  The L* of chromatic colors, on the 
other hand, will be strongly affected by selection of the mij mixing 
coefficients.  If the current calculation for XYZ results in certain 
chromatic colors looking significantly lighter as they become more 
chromatic at constant luminosity Y or L*, this would indicate a 
value of mYL or mYS that was too small, resulting in a calculated 
value of Y that was too low for increasing L(red) or S(blue). 

Hence, the interpretation of “1 ΔE” with regards to magnitude 
of visual difference in color will be the magnitude of visual 
difference in white/gray/black.  Differences of 1 ΔE for all other 
pairs of colors will be compared to this reference. If a particular 
pair of colors differ by 1 ΔE,  the perceived magnitude of 
difference should be similar to a 1 ΔE difference of 
white/gray/black. 

We therefore define a cost function to be minimized, which is 
a summation of errors in predicting ΔE for a color-order system 
(COS) such as Munsell. We define ΔE, ΔL*, ΔC*, ΔH* between 
pairs of colors using the increments Δi, Δj, Δk for the values of 
value, chroma, and hue. We consider the differences between 
adjacent colors and the average difference between colors, for 
example in the case of chroma: 
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The above cost functions can be minimized by modifying the 

LMS->XYZ conversion. We proceed to optimize the LMS->XYZ 
conversion by converting XYZ to LMS with the standard matrix 
and then LMS to XYZ’ by modifying the values of the conversion 
matrix: 
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We note that the above optimizations of LMS->XYZ (which 
are performed by minimizing the cost function) will be affected by 
the coefficients that currently exist in the equations for scaling 

L*a*b*.  These coefficients (100,500, 200 respectively) were 
empirically determined based on Munsell, and would have been 
affected by choice of LMS->XYZ, if the current matrix conversion 
does not adequately reflect human sensation of color.  Hence, 
these values along with the conversion matrix can be optimized 
together. 

A least squares fit (LSF) was performed on the Munsell data 
set. In the fit, the values of mij from equation (1) above were 
automatically adjusted as well as the scaling coefficients used to 
calculate a* and b* (currently 500 and 200 respectively in the 
CIELAB equations).  The error minimization was performed on 
the cost function using Powell’s method, using the average change 
in chroma of CIELAB between increments of Munsell chroma for 
calculating the standard deviation in chroma increments for LABE.  
This latter choice was made to ensure that LABE would be as 
consistent as possible with historical metrics, and to avoid 
reducing the standard deviation of the chroma increments by 
accidentally reducing the overall chroma itself for all colors. 
Results were: 

 
 
 

 
 
 
 
 
 
 
 
The above values resulted in a 33% improvement in the 

consistency of ΔE with the Munsell data.  Research is now 
underway to further optimize the above procedure in order to 
demonstrate significant improvements to the practical use of ΔE 
for purposes of specifications and gamut mapping. 

The author gratefully acknowledges RIT for providing the 
Yxy data for various sets of Munsell colors. 
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Calculated Parameters for XYZE  

LMStoXYZMatrix LMS_L LMS_M LMS_S 

XYZ_X= 1.834 1.006 0.172 

XYZ_Y= 0.282 0.733 -0.016 

XYZ_Z= 0.050 0.162 0.887 

a* Coefficient= 524.90 

b* Coefficient= 220.12 

XYZ' = M 'LMS− >XYZ M −1
LMS− >XYZ XYZ

CostFunction= [ΔC*ijk −ΔC*ik ]2

i=1, j=1,k=1

i=NValue
j=NChroma
k=NHue

∑

ΔC*ikChroma =
1

NChroma

ΔC*ijk (M 'LMS−>XYZ )
j=1

j=NChroma

∑
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