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Abstract
In this paper we describe a non-parametric probabilistic

model that can be used to encode relationships in color naming
datasets. This model can be used with datasets with any num-
ber of color terms and expressions, as well as terms from multiple
languages. Because the model is based on probability theory, we
can use classic statistics to compute features of interest to color
scientists. In particular, we show that the uniqueness of a color
name (color saliency) can be captured using the entropy of the
probability distribution. We demonstrate this approach by apply-
ing this model to two different datasets: the multi-lingual World
Color Survey (WCS), and a database collected via the web by
Dolores Labs. We demonstrate how saliency clusters similarly
named colors for both datasets, and compare our WCS results to
those of Kay and his colleagues. We compare the two datasets to
each other by converting them to a common colorspace (IPT).

Introduction
There has been growing interest in how to use color naming

data to improve color models. Better color name databases[7, 10,
11, 12, 14, 2] and online naming studies[18, 8] have stimulated
recent work. Color naming databases and associated models have
been been useful in color transfer[5], gamut mapping[19, 20], and
methods for specifying or selecting colors in an image[15, 16, 17].

In this paper, we examine the issue of how to represent and
quantify the association between colors induced by names. Cur-
rent methods that incorporate naming data represent the cate-
gory associated with a color using either a single name[5, 6], a
vector[19], or by a set of fuzzy logic memberships[1, 2, 17].

We present a probabilistic framework for working with col-
ors. We define the categorical association of a color c as a con-
ditional probability P(C|c) over colors C in the color space C .
For a color c, the probability P(C|c) represents how likely other
colors in the space C are assigned the same linguistic label as c.
Our choice of using a probability over colors in our framework is
motivated by the following criteria not met by current approaches.

Our model satisfies three design goals. (1) Our approach
can incorporate categorical effects from any number of color
words, expressions involving multiple words, and different lan-
guages. (2) Our framework is based on a non-parametric model
which can capture the differences in color name distributions such
as “yellow” having a narrow focus and “green” having a wide
distribution[21]. (3) Embedding our representation in a proba-
bilistic framework enables us to apply a wide array of statistical
and probabilistic tools to further analyze and study the effect of
categories on colors.

We implement our model on two datasets. We extract color
naming data from six languages in the World Color Survey which
contains naming information at 330 colors on the surface of the

Munsell solid[7]. We also investigate online naming data col-
lected by DoloresLabs which contains names given to 10,000 ran-
domly sampled colors in the RGB cube[8]. Our framework can
incorporate cross-linguistic data and combine contributions from
color words with similar meanings. We introduce the concept of
salient colors based on the statistical notion of entropy. Salient
colors from our approach show good correspondence basic color
terms identified by Berlin and Kay[3]. Our approach also reveals
two regions that are consistently named in the sRGB cube not cor-
responding to typical basic color terms. We compare qualitatively
the differences in salient name regions between the World Color
Survey and the DoloresLabs datasets.

Motivations and Related Work
The goal of this paper is to present a computational frame-

work for modeling color categories derived from experimental
data. Our framework is motivated by three issues that are at best
partially addressed in the current literature.

1. We would like a framework that can include all possible
words for describing a color and not be limited to a pre-
defined list of terms.

2. We would like a non-parametric model capable of capturing
the details in categorical association but still be robust to
noise in the naming dataset.

3. We would like a framework that can support a rich set of
computational and mathematical operations, so that more
in-depth studies of categorical effects can be built on the
framework. In particular, our approach is grounded in prob-
ability theory.

The first issue addresses how to account for the many poten-
tial expressions for describing a color. In 1969, Berlin and Kay
defined color words as basic color terms if their meanings cannot
be derived from other words, and proposed that there are a to-
tal of eleven basic color terms. Basic color terms were shown
to be universal across languages. While some languages such
as English contain all eleven terms, others may have developed
only a subset of the words[3]. Subsequent studies confirmed that
basic color terms are words with the highest consensus between
speakers[4], but found twelve basic color terms in Russian con-
tradicting the limit on the number of terms[22]. Kay and Mc-
Daniel hypothesized that as languages evolve, some individuals
may consider additional words such as aqua/turquoise (green and
blue), chartreuse/lime (yellow and green), and maroon/burgundy
(red and black) as basic color terms[9].

Many existing methods assume eleven or a fixed number
of color categories and cannot process the full set of responses
from recent surveys such as the HP Labs Multilingual Naming
Experiment[18] and the DoloresLabs Naming Dataset[8], which
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have hundreds of color words. Chang et al.’s category-preserving
color transfer algorithm defines eleven convex regions in the color
space corresponding to the basic color terms[5]. Motomura’s cat-
egorical color mapping algorithm maps foci of the eight chromatic
basic color terms between the source and target gamuts[19]. Mo-
roney’s system for translating colors to names operates on the n
most frequently used color words. We want a framework where
all words are included and contributions from words with similar
cognitive concepts such as “maroon” and “burgundy” are com-
bined based on their similarity.

Secondly, color names exhibit different naming distributions.
Colors such as “red” and “yellow” are known to have a narrow
and well-defined center while colors such as “green” and “blue”
are known to be composed of a broad range of hue.[21]

We want our framework have the flexibility to capture the
details in the distributions while being robust to noise in the
data. Current approaches tend to model color categories as a
volume in color space, using various parameterized models, or
using non-parameterized approaches such as histograms. Parti-
tioning the color space[12, 5] assume color names occupy dis-
crete and non-overlapping regions in the color space. Moto-
mura’s gamut-mapping algorithm assumes that each basic term
has an ellipsoid-shaped distribution and models the distributions
using an 81-parameter covariance matrix[19]. Benavente mod-
els the color naming space using a set of 6-parameter Sigmoid-
Gaussian distributions[1]. One advantage of parameterized mod-
els is that they are constructed from a small number of param-
eters which can be estimated accurately. In his adaptive lexical
classification system, Moroney proposes an alternative implemen-
tation in which color names are represented as non-parametric
histograms[16]. While histograms can capture any shape of distri-
bution, Moroney reported noise in the data due to limited number
of data points and suggests that smoothing operators or hedging
be applied to post-process the histograms.1

Finally, we would like a framework capable of supporting
a rich set of computational and mathematical tools. Instead of
being merely a representation, the framework should allows us
to perform further computation and analysis on how categories
affect the way we associate colors. Treating the association be-
tween colors as a probability distribution positions our framework
within the well-studied domain of probability theory.

Methodology
Colors and Color Words

A naming dataset consists of a list of responses in the form
of “color”-“color word” pairs that record the words used to de-
scribe a color. A “color” refers to the stimuli shown to a respon-
dent and varies between datasets from Munsell color chips viewed
under controlled lighting to rectangles of colors displayed on un-
calibrated monitors. Unconstrained surveys allow respondents to
use any expression whereas constrained surveys ask respondents
to choose from a predefined list of words. An unconstrained color
expression could include, e.g., “granny smith apple green”, “light
robin’s egg pastel blue”, or “mix all the paint together”. In prac-
tice, most expressions recorded in unconstrained surveys consis-
tent of a single word or a simple set of words such as “blue” or

1We should emphasize our application differs from Moroney’s in that
his work is on modeling the distribution of color names while our work is
on modeling the association between colors due to naming effects.

“bluish green”. We will use the term “color words” from this
point on even though it could refer to any possible expressions for
describing a color.

A naming dataset can be tabulated using a word count table
where the list of all colors presented in the survey is displayed
along the columns, and a list of all color words recorded is dis-
played along the rows. Each entry in the table indicates the num-
ber of times a corresponding color word is used to describe the
corresponding color.

Depending on the nature of the naming dataset, the density
of word count table may vary. The World Color Survey (WCS)[7]
is cross-linguistic and unconstrained, and collects naming data on
a set of 330 colors. The word count table for the WCS consisting
of 2300 rows by 330 columns with 20% non-zero entries. In com-
parison, the DoloresLabs color name dataset[8] while also uncon-
strained uses 10000 randomly-sampled colors. A total of 1966
expressions were recorded creating a 1966-by-10000 table that
contains non-zero values for only 0.05% of the entries.

We use C to denote all colors in the color space. For certain
datasets such as the World Color Survey where naming data is col-
lected on the surface of the Munsell solid, C is a two-dimensional
surface in the color space. We use W to denote the set of color
words in a dataset.

We define two random variables C and W in our framework.
C is a random variable that takes on different colors c ∈ C . The
probability that C takes on the value c is P(C = c). W takes on
values over the set of color words W .

We use T to refer to the word count table. T (w,c) is the
number of times the word w was used to describe the color c.

The first relationship of interest is the conditional probabil-
ity P(W |c). Given a color c, P(W |c) refers to the frequency of
color words W being used to describe c, and can be computed by
selecting the column in the word count table corresponding to c,
and normalizing the column. This produces a probability over the
set of possible color words that sums up to 1 in proportion to their
frequency of use.

P(w|c) = T (w,c)/∑
w

T (w,c) (1)

The second relationship of interest in the conditional proba-
bility P(C|W = w). Given a color word w, P(C|w) describes the
likelihood of colors C being referred to by the word w. This prob-
ability can be computed by selecting the row in the word count
table corresponding to w, and normalizing the row.

P(c|w) = T (w,c)/∑
c

T (w,c) (2)

Categorical Association of a Color
We now compute a conditional probability P(C|c) for each

color c that summarizes how color c is associated with all other
colors C due to categorical effects. This distribution describes,
given a color c, likelihood of colors C in the space C being given
the same name as c. We compute this distribution as follows:

1. For each color word w, we compute the conditional proba-
bility P(C|w). This distribution describes, if a color word w
is used, the likely colors that w is referring to.

2. We compute the conditional probability P(W |c) =
(P(w1|c),P(w2|c), · · ·). The color c may be associated
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Figure 1. Categorical association P(C|c) for color � c = sRGB(178,75,32). The graphs show planes through eight levels of brightness in IPT space. The size

of the squares is proportional to the the likelihood of other colors given the same name as c. The solid line indicates the boundary of the sRGB gamut. This

distribution over colors is used to computationally represent the category of color c.

with multiple color words. This distribution describes the
frequency that color words w1,w2, · · · are used on color c.

3. We then iterate over all color words. Suppose color c is
referred to by a word w, we tally up how likely other colors
are named w. We sum over the contribution in proportion to
how frequently w is applied to c.

P(C|c) = P(C|w1)P(w1|c)+P(C|w2)P(w2|c)+ · · · (3)

=∑
w

P(C|w)P(w|c) (4)

The categorical association between colors is now completely ex-
pressed in terms of colors removing the linguistic labels from the
representation. Figure 1 shows the categorical association for a
color in the DoloresLabs naming dataset.

Color Saliency
We define the quantity “color saliency” as a way for deter-

mining colors that have strong name association versus colors
that have ambiguous names. High saliency implies that a color
c is strongly associated with a small set of colors; the category to
which c belongs is well defined. Low saliency implies c is weakly
associated with a large number of colors. This occurs when the
names given to c is ambiguous; the respondents put color c in the
same category with a wide variety of colors but not consistently.

Entropy measures the amount of randomness in a probability
distribution. As the categories associated with a high-salient color
is less random than low-salient color, we define color saliency for
a color c as negative entropy of P(C|c).

Saliency(c) = −H(P(C|c)) = ∑
c′∈C

P(c′|c) logP(c′|c) (5)

Implementation
World Color Survey Dataset

The World Color Survey (WCS) collects naming informa-
tion in 110 languages from 2616 respondents. Conducted in the
respondents’ native language, the survey records color names on
330 Munsell color chips (320 saturated colors on the surface of
the Munsell solid plus 10 achromatic colors).[7] The WCS con-
tains spoken languages only as the original intent of the survey
is to compare color names from societies that developed inde-
pendently from one another. English and other languages from
industrialized societies are not included in the survey.

We select six languages2 that have at least 11 basic color
terms, so the results could be easily interpreted by people who
speak English. The number of color words recorded in the six
languages were 28, 31, 19, 25, 60, and 13 respectively. As the
languages share no common vocabulary, there are a total of 176
distinct words. Each value in C corresponds to a color chip in the
WCS stimulus array. W is a discrete variable of length 176. This
gives us a 176-row by 330-column word count table.

DoloresLabs Dataset
The DoloresLabs naming dataset[8] is an online survey that

collected English naming information from 10,000 respondents
via Mechanical Turk using 10,000 randomly-sampled colors from
the RGB cube. The colors are displayed as 60- by 40-pixel rectan-
gles ten at a time against white background on each respondent’s

2The languages selected are: Cakchiquel (from Guatemala), Camsa
(from Colombia), Chavacano (from the Philippines), Kriol (from Aus-
tralia), Mazahua (from Mexico), and Yakan (from the Philippines)
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Figure 2. Color saliency for colors on the surface of the Munsell solid. Hue is on the horizontal axis, and value is plotted on the vertical axis. The size of the

colored square is proportional to color saliency. Circles indicates the foci of the basic color terms in the Munsell Space reported by Berlin and Kay[3]. Squares

indicates the foci of the basic color terms reported by Sturges and Whitfield[24].

own monitor.
The raw DoloresLabs naming dataset contains 1966 distinct

ASCII strings. After correcting for spelling, leading/trailing white
spaces, and hyphenation, there are 1740 distinct expressions. We
break apart expressions with multiple words into single words,
so that W is a variable over 302 individual words. To facilitate
the comparison with the WCS dataset, we resample the colors in
the DoloresLabs dataset so we have a cylindrical grid of points.
We assume colors are in sRGB coordinate, and convert them to
IPT colorspace. We then create a three-dimensional grid of cells.
We divide brightness [0.00,1.00] into 10 equally-spaced intervals,
divide chroma [0.00,0.78] into 12 equally-spaced intervals, and
use a variable number of hue intervals depending on the chroma
ranging from 1 (for chroma = 0), 8 (for chroma = 0.065), up to
81 (for chroma = 0.455). The grid contains 7469 vertices, 1234
of which lie inside the sRGB colorspace. We resample at these
1234 vertices of the grid. C is a variable over the 1234 resampled
colors. The final word count table consists of 302 rows by 1234
columns.

Results
The goal of our saliency measure is to identify regions in the

color space that are consistently named. Comparisons of naming
regions across viewers, languages, media, or viewing conditions
have traditionally been conducted by matching the foci (or cen-
troids) or by comparing boundaries of specific color names. We
examine the actions of computing saliency by matching colors to
colors.

Figure 2 shows color saliency for the 330 colors on the World
Color Survey stimulus array. Known locations of basic color foci
reported by Berlin and Kay[3] and by Sturges and Whitfield[24]
are marked as circles and squares respectively. We observe that
regions of colors with high saliency appear to match the locations
of the basic color term foci. Brown, green, and blue foci from
both sources are all situated within their respective high-saliency
regions. Red, orange, and yellow foci correspond to high-salient
colors in their respective part of the color space. We also observe
several areas with low color saliency separating green from all
other colors, separating blue from all other colors, and marking

the red-brown, red-black, and pink-yellow boundaries. This pro-
vides some initial evidence that saliency can be used to describe
the shape of name regions and identify naming boundaries in a
color space.

Figure 3 shows color saliency computed from the Dolores-
Labs dataset and displayed on planes corresponding to eight lev-
els of brightness in IPT space. For illustration purposes, we create
regular grid in a cylindrical IPT space with 8 brightness levels, 12
chroma levels, and up to 81 hue intervals. Naming data is lin-
early interpolated to the closest vertices. While we do not have
experimental data on the locations of the basic color terms foci
in sRGB space, salient regions appear qualitatively to correspond
to most of the basic color terms. The is a lack of white salient
region which we suspect is due to the fact that DoloresLab color
patches are displayed against a white background. We observe
that many of the salient regions are clustered in the gamut corners
such as red, orange, green, blue, and pink. Interestingly, some
of these regions do not appear to correspond to basic color terms;
examples of such regions include cyan (at a brightness level of 0.9
corresponding at the bottom left corner of the gamut) and lavender
(light purple at a brightness level of 0.7 situated half way between
light blue and pink).

Figure 4 compares color saliency in the World Color Sur-
vey dataset with that of the DoloresLabs dataset. We convert both
set of data to IPT coordinates. For the World Color Survey, we
assume that the colors were viewed under D65 lighting for all
speakers in all languages. For the DoloresLabs dataset, we as-
sume that coordinates to be sRGB. We show the comparison on
eight separate plots. In each plot, we display the color saliency in
the WCS using a ring of Munsell colors of constant value. We also
display DoloresLabs dataset using a constant-brightness plane in
IPT space.

We observe a shift in hue angle for salient regions corre-
sponding to green and blue between the WCS and DoloresLabs
data set at Munsell values of 2 and 3. At Munsell value of 4, we
also observe that the salient regions corresponding to red, brown,
and purple are aligned between the two surveys. As mentioned
earlier, we observed an additional salient region corresponding to
lavender in the DoloresLabs dataset. The lack of a corresponding
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Figure 3. Color saliency for planes corresponding to 8 brightness levels in IPT space. The size of the colored square is proportional to color saliency.

salient region in the WCS dataset is demonstrated on the plot for
Munsell value of 7. Similarly, there is a lack of an equivalent cyan
salient region in the WCS dataset at a value of 8.

Discussion and Future Work
Our preliminary results showed initial support for our frame-

work in three ways.
First, we were able to identify high-saliency regions in the

color space. Salient colors from six languages in the World Color
Survey match known foci locations of basic color terms. We ob-
served that the sRGB colors cluster in the gamut corners, and in-
clude clusters not typically associated with basic names such as
“lavender” and “cyan”.

By creating a saliency plot for the two datasets in a com-
mon perceptual space, we were able to qualitatively compare the
name regions on a display to those produced by reflective sam-
ples (Munsell chips). As expected, these are different due to both
gamut limitations and appearance differences.

We showed that it is possible to build a non-parametric nam-
ing model for capturing detailed information about how colors
categorically associated with one another without being nega-
tively affected by noise in the data. Traditional naming dataset
generally collects responses at a fixed number (usually in the hun-
dreds) of colors which yields a large number of responses per
color but lacks naming information between the colors. In con-
trast, the DoloresLabs naming dataset contains naming informa-
tion for a large number of colors, but yields very few responses
per color. Our model was able to interpret this sparse data to
provide naming information at 1,234 points. In contrast, there
are 330 colors in World Color Survey, 387 colors in Benavente’s
fuzzy English naming dataset, or the 216 colors in the HP Labs
Multilingual Experiment.

We plan to further refine our interpretation of saliency and
look into methods for quantitatively correlating the saliency re-
gions across gamuts in a way that could create gamut mapping
algorithms that preserve categorical names. We are currently
looking into methods for computing categorical distance between
pairs of colors, and hope such a measure can benefit further vi-
sualization and analysis of color naming datasets. We will also
explore applications of our model in digital imaging, information
visualization and computer graphics.
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