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Abstract
Colours are usually described using three perceptual vari-

ables: an achromatic variable, such as lightness or luminance,
and two “chromatic” varibles, such as chroma and hue. This
means that the conversion of colour images to greyscale is of-
ten thought of as the removal of “chromatic information”, which
leaves a greyscale made by just the achromatic colour variable;
i.e. luminance or lightness. One obvious problem with this ap-
proach is how to make a greyscale for equiluminant images, or
images containing equiluminant object boundaries.

In this paper we review some of the more recent attempts
to tackle the colour-to-greyscale problem. We then use an image
preference experiment to test the performance of these methods on
a selected set of images; some of which lose a significant amount
of information when converted to greyscale using luminance, and
others which do not. The results show that, in general, the newer
techniques can provide a greyscale image which is preferred to
that derived by luminance, especially for images that have promi-
nent equiluminant boundaries. The results also show that this
advantage is not guaranteed for every image, and that no partic-
ular algorithm provides consistently better performance than the
others.

Introduction
The problem of converting colour to greyscale can be ex-

pressed in many different forms. In one sense the problem is a
special case of the dimensionality reduction problem: how can
we reduce a 3D signal (colour) to a 1D signal (greyscale) in a
way that preserves all the important information? As such, the
numerous techniques that have been employed in dimensionality
reduction could also be applied to the problem at hand. Similarly,
the colour to greyscale problem can also be thought of as a special
case of gamut mapping, where the target gamut is the greyscale
axis of a monochromatic output device. In this paper, we restrict
ourselves to those dimensionality reduction and gamut mapping
algorithms that have specifically been applied to the the colour-
to-greyscale problem, although in future work we will explore the
suitability of more general algorithms.

Luminance (LUM)
The most common technique for converting colour images

to greyscale is to calculate the luminance value at each pixel. If
the camera’s colour space is sRGB, then the luminance value Alum
is given by:

Alum = 0.2172×R+0.7152×G+0.0722×B, (1)

where R, G and B represent the three colour channels of the cam-
era. Mathematically, this operation projects the RGB vector in the

direction of the luminance axis.

Alsam’s method (ALS)
Instead of using this, image independent, luminance axis,

Alsam [1] suggests projecting the image colours onto an image-
dependent achromatic axis that captures the image’s major colour
variations, and hence colour contrasts. The method can be written
mathematically as follows:

Aals = ω1R+ω2G+ω3B, (2)

where ω = [ω1,ω2,ω3]
T is the first eigenvector the image’s raw

cross product matrix (this is the same as the covariance matrix
derived without subtracting the image mean), which is similar to
the first principal component vector.

Alsam’s method also includes a component for sharpening
the resulting greyscale images by high-pass filtering the original
three colour channels (R, G and B) and then adding this high-pass
filtered information back onto the greyscale image.

Grundland’s method (GRU)
Grundland et al. [2] also follow a projection based ap-

proach, although their technique differs significantly from both
the LUM and ALS methods. They firstly transform the image
into the opponent Y IQ colour space. They treat the luminance
(Y ) component and chrominance (IQ) components separately. In
the IQ plane they find a single vector that captures the impor-
tant colour-differences between pixels; this part of the algorithm
can be tuned to capture colour difference information over dif-
ferent spatial scales. When they have found this axis of the IQ
plane, which they refer to as the predominant component, they
then project the 2D IQ vectors at each pixel onto this vector, to
give a single chrominance value, C. At this point the image has
been reduced from 3 dimensions (YIQ) to 2 dimensions (YC). The
final conversion from 2D to 1D (greyscale) is done by computing
the weighted sum of the Y and C channels; that is:

Agru = Y +βC, (3)

where Y is the luminance image in the Y IQ colour space, C is
the chroma value derived from the algorithm and β is a weighting
factor. The weighting factor β is determined to both ensure that
the final image is within the displayable range of the device, and to
emphasize colour details more or less strongly. Any image values
that are outside the displayable range after this computation are
then clipped to the boundary values.

In common with the previous two methods, this results in a
global colour mapping: a given colour will always be mapped to
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the same greyscale value regardless of its spatial location. It also
has the feature that if the pixels do not have any chromatic con-
tent (they are grey in the original image) then these pixels remain
unchanged.

Rasche’s method (RAS)
Rasche and co-authors [3, 4, 5] pose the problem of con-

verting colour to greyscale in a general mathematical form. They
suggest that for a greyscale image to retain the same colour dif-
ferences that exist in the original image the grey levels should be
assigned by minimising the following objective function:

Aras = min
∀ai,a j

(
∑

i∈S1

∑
j∈S2

[∣∣ai −a j
∣∣− f (

→
c i,

→
c j)
]2
)

. (4)

In this equation the variables ai and a j indicate the greylevel val-

ues assigned to colours
→
c i and

→
c j (the overhead arrow indicates

a vector quantity). The set S1 usually refers to all the colours in
the image, while the set S2 may be all the colours in the image,
or may be a subset of colours in a local neighbourhood of the ith
colour. The function f (·) refers to a colour difference calculation;
Rasche et al. employ a proporitional difference calculation, that
ensures both that the final image will be within the displayable
greyscale range, and that large colour differences are not given
excess weight in the optimisation.

Bala’s Method (BAL)
In contrast to the global mappings of all the previous meth-

ods, Bala and Eschbach [6] use a local mapping: a given colour
may be mapped to different greyscale values depending upon its
spatial surround. Their idea is based upon the observation that
the important loss of information in a luminance rendering occurs
at the boundaries of coloured objects where the luminance com-
ponent of the edge is small. Thus, in their technique they aim to
enhance these boundaries. They do this by firstly transforming the
image into an opponent colour space, consisting of a luminance
channel and two chrominance channels. They then perform a high
pass filtering on each of the three channels. The resulting high-
pass filtered images indicate where edges occur in the original
image, and the channel where the largest edge signal occurs indi-
cates whether an edge is a luminance or chrominance edge. They
then add the high-pass information from the chrominance images
back onto the luminance image, but giving more weight to edges
where the luminance component of the edge is small. In this way,
the boundaries between equiluminant colours are enhanced to a
greater degree than edges where there is also a strong luminance
difference. In line with the earlier methods, we can summarise
this operation mathematically as:

Abal = A+ γ (x,y)Chp (x,y) , (5)

where A is an achromatic channel (luminance or lightness), Chp is
a high pass filtered chrominance image, and γ (x,y) is a spatially
varying weighting function derived from the strength of the high-
pass filtered achromatic image. Apart from the spatially varying
weighting function, this method can be seen to be closely related
to Grundland’s method, in that it adds chromatic information back
onto an ordinary achromatic image.

Socolinsky’s Method (SOC)
Socolinsky and Wolff [7, 8] developed a technique of image

fusion which also follows a local mapping regime (although their
technique predates that of Bala and Eschbach). The goal of the
technique is to find a greyscale which, when differentiated, re-
turns gradients similar to the gradients of the colour image. This
can be expressed mathematically as finding the greyscale Asoc that
minimises the following equation:

min
Asoc

‖∇Asoc(x,y)−∇cI(x,y)‖ , (6)

where ∇ and ∇c are differentiation operators for the greyscale
image and colour image, I, respectively. For the colour image, ∇c

is DiZenzo’s structure tensor [9], which returns a single x and y
derivative at each point that best captures separate derivatives in
the three colour channels.

The solution to Equation 6 is given by the solution to Pois-
son’s equation:

∇2Asoc = div(∇c) , (7)

where ∇2 denotes the Laplacian operator and div(·) is the diver-
gence.

Algorithm implementation and image details
The LUM, and SOC methods were both implemented us-

ing our own MATLAB code, following published descriptions of
the methods [7, 10]. Code for the GRU method was provided
from the author’s website 1, as was the code for RAS method 2.
Code for the ALS method was provided by the author. In our im-
plementation we omitted the last sharpening stage so as to avoid
biasing observers preferences, as there is evidence [11] that ob-
servers tend to prefer sharpened images and we wanted to investi-
gate preferences for greyscale conversions only. In the case of the
BAL method we used the author’s own implementation. When-
ever possible we used the methods’ default parameters, only ad-
justing them when a clearly unsatisficatory image was generated.

All the methods assumed that the images were encoded in a
linear sRGB space. Thus, where the algorithm did not explicitly
invert the sRGB gamma, we inverted the gamma ourselves before
processing the image, and then added it on to the result for dis-
play. In addition, our implementation of the SOC algorithm did
not contain an explicit gamut-mapping step; i.e. it was possible
for values in the resulting greyscale to fall outside the range [0,1].
To overcome this we used a simple linear tone-mapping operator
that matched, as closely as possible, the histogram of the SOC
output to the histogram of the LUM output [12].

The six images chosen for testing included artwork (a paint-
ing by Patrick Heron 3 and Claude Monet’s “Impression Sun-
rise” 4), cases with iso-luminant edges (including the two art im-
ages and a photograph of a field of poppies), and a human face, as
well as natural (an image of a parrot) and man-made (an image of
some hats) scenes . The six images are shown in Figure 1.

1http://www.cl.cam.ac.uk/ mg290/Portfolio/TurnColorsGray.html
2http://www.fx.clemson.edu/ rkarl/c2g.html
3Rumbold Vertical Three: Orange Disc in Scarlet with Green,

http://www.waddington-galleries.com/artitsts/heron/
4http://ibiblio.org/wm/paint/auth/monet/first/impression/sunrise.jpg
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In Figure 2 we show the rendering of the Heron painting by
each of the six methods. It is clear from the luminance (LUM)
version of this image (far left) that a large feature is lost from the
bottom-right of the image. This corresponds to a green patch that
is equiluminant to the surrounding area. Similarly, when using lu-
minance the sun in the “monet” image becomes indistinguishable
from the sky, while in the image of the field of poppies the red
poppies are indistinguishable from the green grass.

The greyscale images produced by the six methods differ
qualitatively in several ways. Figure 2 demonstrates differences
in terms of average brightness, contrast, and even greyscale order-
ing (the RAS method makes the feature in the bottom-right lighter
than its background, while the other methods make it darker).
When applied to the “parrot” image several of the methods pro-
duced visible artefacts: the GRU method produced many satu-
rated pixel values on the parrot’s head, while the SOC method pro-
duced significant edge smearing and the RAS method produced
an image that was relatively dark.

Figure 1. 6 different images used in the experiment. From the top-left, we

label the images “heron”, “hats”, “girl”, “poppies”, “monet” and “parrot”.

Psychophysical experiment
The purpose of the experiment was to find out which of

the methods, if any, produced the most pleasing greyscale repro-
ductions. To do this a balanced pairwise comparison was used,
in which the greyscale image produced by each of the different
methods is compared to all the other greyscale versions of the
same colour original. This results in N(N − 1)/2 comparisons,
where N is the number of different methods to be tested (in our
case N = 6, which gives 15 comparisons in total).

For a single comparison the original colour image was dis-
played in the centre of the screen with two, different, greyscale
reproductions shown flanking the original. Subjects were asked to

consider all three images, and to report which of the greyscale re-
productions they preferred. The explicit instructions were: “Con-
sider the colour image and the two grey versions; which grey im-
age would you prefer as a copy of the colour image?”. No fur-
ther instructions were given to the subjects, who were left free
to choose their own criteria on which to form their judgements.
When they had made their decision, they used a response box to
indicate whether it was the left or right image that they preferred.
The experiment was performed by 6 paid subjects, naive to the
purpose of the study. All were colour normal and had normal or
corrected-to-normal acuity.

For each of the six original test images, six greyscale ver-
sions were produced (one for each algorithm tested). Each sub-
ject judged a given pair of algorithms 4 times for each test image.
In total, each subject made 15×4 = 60 comparisons for each im-
age, making 360 comparisons over all six images. For a given test
image, each pair of algorithms were compared 24 times (4×6 ob-
servers). To prevent subjects becoming tired or bored, the trials
were split into two sessions, each lasting 20-25 minutes.

The experiment took place in a darkened room, so as to avoid
the effects of ambient lighting. Subjects were seated approxi-
mately 1.14 metres from the monitor, and their head positions
were stabilised using a chin-rest. The average size of the images
was 6.5 degrees (visual angle) by 5.5 degrees and they were dis-
played against a checkerboard background to reduce contrast ef-
fects at the boundaries of the image. At the start of each session
the subjects adapted for 60 seconds to a neutral grey background.
In a single trial, each image triad was displayed for exactly 8 sec-
onds. After 8 seconds the images disappeared, leaving only the
complex background. Subjects were allowed to respond as soon
as they had made a decision, whether 8 seconds had elapsed or
not.

The computer control software and monitor were part of
a ViSaGe system, supplied by Cambridge Research Systems.
The monitor was calibrated and characterised beforehand and the
white-point set to CIE D65. The images used were assumed to
be stored in sRGB format, and thus had to be colour-corrected to
be displayed on the monitor in question. To avoid out-of-gamut
colours, the images were scaled by the same scaling factor (af-
ter removing the sRGB gamma) until they were guaranteed to be
within the monitor gamut.

Statistical methods
The result of the paired comparison experiment is a matrix of

scores for each image. An example is shown in Table 1, which has
been compiled for the “poppies” image. Each row and column of
the matrix indicates one of the six different algorithms. After each
comparison judgement an element of this matrix is incremented:
the row of the element corresponds to the preferred method, while
the column corresponds to the method that was not preferred. This
process is repeated until all the comparisons, for all subjects, have
been completed. The column to the far right of this matrix shows
the sum of each of the rows. This indicates how many times that
particular method was preferred.

The “Total” column in Table 1 suggests that, for the “pop-
pies’ ’ image, the SOC method was the most preferred method,
and the LUM method was least preferred. The raw scores, how-
ever, do not tell us whether the difference between the scores is
significant or not. To get an estimate of this we employ Thur-
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Figure 2. 6 different renderings of a colour image (original not shown). From left to right: LUM, SOC, ALS, GRU, RAS, BAL.

Method LUM SOC ALS GRU RAS BAL Total

LUM 0 3 4 4 13 12 36
SOC 21 0 17 18 19 21 96
ALS 20 7 0 17 16 16 76
GRU 20 6 7 0 19 19 71
RAS 11 5 8 5 0 13 42
BAL 12 3 8 5 11 0 39

Matrix of scores for the “poppies” image.

stone’s law of comparitive judgement, case V (see [13] for more
details) 5. The result of applying Thurstone’s law is a normalised-
score for each of the algorithms: positive values suggest that the
method is generally preferred, while negative values suggest the
opposite. This analysis also produces 95% confidence limits for
each score, which assist in judging the significance of the results.

To find out if one method outperforms another, some mea-
sure of the agreement between observers is needed. Here we
follow the method of Ledda et al. [14] and calculate Kendall’s
coefficient of agreement [15]. To describe this statistic we firstly
label the ith row and jth column of the matrix shown in Table 1 as
pi j . The next step is to calculate the total number of agreements
between pairs, Σ, which is given by:

Σ =
1
2 ∑

i�= j

pi j
(

pi j −1
)

(8)

Kendall’s coefficient of agreement u can now be defined as:

u =
8Σ

N(N −1)T (T −1)
−1 (9)

where N is the number of methods tested and T is usually the
number of observers taking part in the experiment. In our calcula-
tions, however, we define T as the number of observations, which
is the number of observers multiplied by the number of repetitions
(4×6 = 24). The closer the value of u to 1, the greater the agree-
ment between observations. The minimum possible value for this
statistic is −1/(T −1) when T is even, and −1/T when T is odd.
It is also possible to examine whether this agreement is significant
or not, i.e. to test the null hypothesis that observers do not agree
with one another. We again employ the methodology of Ledda et
al. [14] to do this, and use the χ2 statistic applied to Kendall’s
coefficent of agreement.

5We used the implementation in Green’s toolbox, which can be found
at http://www.digitalcolour.org/toolbox.htm

As well as finding out if observers agree with one another,
it is important to examine their constistency. The idea of consis-
tency can be captured by a simple example: if we have three algo-
rithms, say A, B and C, and we compare each method with each
of the others, then the judgements are consistent if, for example
A > B, B > C and A > C (where the > symbol means “preferred
to”). This consistency can be violated if, for example, C > A.
Kendall and Babington-Smith [15] provide a statistic, the coeffi-
cient of consistency, to measure this property. This statistic, Ω, is
given by:

Ω = 1− 24c
N3 −4N

, (10)

where c is the total number violations of consistency, per observer,
per image. The value of c is given by:

c =
N
24

(
N2 −1

)
− 1

2
z, (11)

where z = ∑(scorei − (N −1)/2)2 and scorei is the total score for
the ith method (i.e. the ith entry in the “Total” column of Table 1).
The value of Ω is 1 when consistency is perfect, in which case the
methods can be ranked reliably. In our experiments we measure
the average value of Ω over all observations.

Results
In Figure 3, the data from Table 1 are plotted in terms of the

normalised scores derived from applying Thurstone’s law. Very
broadly, we can say that where the error bars of two methods do
not overlap, there is a significant difference between them; i.e. we
can reject the null hypothesis that the two scores are not different
from one another. Thus, for this image, we may conclude that the
SOC, ALS and GRU methods tend to be preferred reproductions,
while the RAS, BAL and LUM reproductions are not preferred. A
similar trend was also found for the “monet” and “heron” images
(although for these images the RAS method performed signifi-
cantly better). Interestingly, the “heron”, “monet” and “poppies”
images are those that lose salient details when luminance is used
to convert them to greyscale.

Figure 4 shows the results pooled for all images. Here, the
methods SOC, ALS, GRU and RAS perform equally well, while
the methods BAL and LUM tend not to be preferred. These re-
sults provide some experimental evidence to back up the claim
that the luminance transform can be improved upon when render-
ing colour images in greyscale. They do not tell the whole story
however. Figure 5 shows the results for the “hats” image. In this
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Figure 3. Outcome of applying Thurstone’s law to preference judgements

on the “poppies” image. The x-axis shows the six different colour-to-grey

algorithms, while the y-axis represents the normalised preference-score for

each method (positive values indicate the method was preferred, while neg-

ative values suggest it was not preferred). The error-bars represent 95%

confidence limits for the normalised scores.

case the LUM method performs as well as most of the other algo-
rithms. Nonetheless, there appears to be a slight advantage of the
BAL method. Similar results were also found for the “girl” image,
where this time the RAS method was the only one to outperform
LUM.
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Figure 4. Results for all the images pooled together (see Figure 3 for

details).

In Figure 6, the results for the “parrot” image are shown.
The trend for this image is different to those for the other images,
with the LUM, ALS and BAL methods clearly outperforming the
GRU, SOC and RAS methods. We recall, however, that the GRU,
SOC and RAS methods all produced visible artefacts for this im-
age, while the LUM, ALS and BAL images were artefact-free.
This is sure to have contributed to the preference results.

Table 2 shows the results of the observer-agreement analysis.
The column headed “u” reports the values of Kendall’s coefficient
of agreement. This value is relatively high for four of the images,
but is low for both the “hats” and “girl” image. In the cases where
agreement was high, three of the four images have prominent iso-
luminant features, while the fourth showed visible artefacts for
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Figure 5. Results for the “hats” image (see Figure 3 for details).
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Figure 6. Results for the “parrot” image (see Figure 3 for details).

several methods. It seems reasonable that when when a particular
feature is prominent (e.g. the sun in the “monet” image) this will
tend to be used by observers to guide preference, and thus differ-
ent observers will agree on the preferred images. For the “hats”
and “girl” images, the low agreement scores support the earlier
result that most algorithms perform similarly for these two im-
ages, and suggests that different observers may be using different
criteria to judge these images.

The next two columns of the table test the significance of the
u scores, i.e. test the null hypothesis that observers do not agree
against the alternative hypothesis that they do agree. The first col-
umn shows the raw χ2 score, while the second shows the prob-
ability with which we can accept the null hypothesis. In general
the u scores are significant, and we can say that observers agree
with one another. Even for the “hats” and “girl” images the agree-
ment is significant at the 0.01 and 0.05 confidence levels respec-
tively. This suggests that, while observers may not agree on some
judgements, there is good agreement on other judgements, e.g.for
the “hats” image most observers agree that the BAL method is
preferred to the other methods, and that the RAS method is not
preferred (see Figure 5).

The final column shows the average consistency score.
These values are relatively high, and show good observer con-
sistency. Again, however, the values are lower for the “hats” and
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“girl” image. This suggests that not only do observers not agree
with one another, but they themselves are relatively inconsistent,
and may be using changing their criteria for different individual
judgements.

It is also interesting to note that the average response time of
observers was 3.25 seconds, which suggests that they were using
salient features to guide their decisions, rather than taking a long
time to inspect the detail in the images.

Image u χ2 Confidence Consistency
level

Heron 0.52126 194.8333 0.001 > p 0.88542
Hats 0.06087 36 0.01 > p 0.60417
Girl 0.040097 28.8333 0.05 > p 0.71354
Poppies 0.2256 92.8333 0.001 > p 0.75521
Monet 0.43527 165.1667 0.001 > p 0.80729
Parrot 0.38551 148 0.001 > p 0.81771

Summary statistics for the six different images used in our
experiment.

Discussion and conclusions
In this paper we have both reviewed the existing state of the

art in colour-to-greyscale conversion, and used an image prefer-
ence experiment to differentiate between the performance of the
methods. In general the LUM reproduction was not preferred
when signficiant equiluminant features were found in the original
scene (i.e. for the “heron”, “monet” and “poppies” images). For
these scenes there was also better agreement between observers,
suggesting that the accurate reproduction of equiluminant details
may be important for the observers, and hence drive their decision
making. For images where strong equiluminant boundaries were
not present the LUM rendering performed at least as well as most
of the other methods. The results for the “parrot” image suggest
a note of caution in the use of more advanced colour to greyscale
techniques, with 3 of the 6 methods producing unwanted artefacts
that counteracted the positive effect of maintaining colour con-
trast. When rendering individual images, however, these artefacts
may be mitigated by a more careful choice of algorithmic param-
eters.

The results show that the performance of colour-to-greyscale
algorithms is strongly image dependent: one algorithm may out-
perform another for a particular image, but this does is not hold
over all images. One possible strategy for coping with this might
be to implement the algorithms in two stages: firstly to classify
an image based upon its content, and then to apply the algorithm
that is likely to give the best reproduction.

It is also important to point out that our results relate only to
image preference judgements. Furthermore, we found that sub-
jects registered their responses fairly quickly, which suggests that
they were using broad details to guide their preferences. Both
these factors are likely to influence the results. In future work
we intend to test the algorithms in more functional settings, e.g.
interpreting information in pie charts or bar charts rendered in
greyscale; we expect that if people are given such a task, then the
relative performance of the different algorithms will change.
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