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Abstract
A general framework for adaptive gamut mapping is pre-

sented in which a wide range of published spatial gamut map-
ping algorithms fit. Two new spatial and color adaptive gamut
mapping algorithms are then introduced. Based on spatial color
bilateral filtering, they take into account the color properties of
the neighborhood of each pixel. Their goal is to preserve both the
color values of the pixels and their relations between neighbors.
Results of psychophysical experiments confirm the good perfor-
mance of the proposed algorithms.

Introduction
The fundamental role of a Gamut Mapping Algorithm

(GMA) is to manage the color gamut changes between an original
image and its reproduction via a given technology (print, photo-
graph, electronic display,...). These changes correspond to shape
differences and size reduction of the gamut causing a loss of in-
formation. Ideally, a GMA should optimize the reproduction by
taking into account the color and spatial distribution of the orig-
inal image, such that the reproduction is perceived as similar as
possible to the original.

In the quest for an optimal reproduction, an impressive
number of GMAs have been proposed in the literature. Morovic
and Luo have made an exhaustive survey in [1]. The ICC color
management flow is based on the first generation, non-adaptive
point-wise GMAs [2]. Morovic and Luo classified these classic
GMAs into two categories: gamut clipping and gamut com-
pression. Gamut clipping algorithms project color lying outside
the output gamut onto its boundary. They usually preserve
saturation but clip image details and introduce clipping artifacts.
Gamut compression algorithms compress the input gamut onto
the output gamut and are better at preserving details but tend to
reduce saturation. The next step has been to investigate adaptive
algorithms with the selection of an appropriate GMA depending
on the image type or directly on the image gamut instead of the
input device gamut [3]. To further improve adaptive GMAs,
it has been advocated that preservation of the spatial details in
an image is a very important issue for perceptual quality [4, 5].
GMAs adaptive to the spatial content of the image, i.e. Spatial
Gamut Mapping Algorithms (SGMAs), have been introduced.
These new algorithms try to balance both color accuracy and
preservation of details, by acting locally to generate a reproduc-
tion perceived as close to the original. There are a limited number
of publications regarding this recent and important development
that was first introduced by Meyer and Barth in 1989 [6].

We distinguish two families of SGMAs which follow differ-
ent approaches: the first uses iterative optimization tools, the sec-
ond reinserts high-frequency content in clipped images to com-
pensate for the loss of details caused by clipping.

The optimization family includes algorithms proposed by
Nakauchi et al. [7], McCann [4], and Kimmel et al. [8]. Using
models of perception of the Human Visual System (HVS), the al-
gorithms minimize the perceived differences between the original
and the candidate reproduction by locally modifying the candi-
date. In these optimization processes, the main difficulty is to
define an appropriate criterion to optimize, using a valid percep-
tual model. Another issue is the lengthy computing time, making
these algorithms difficult to use in an industrial context.

Algorithms of the second family are usually sufficiently fast
to be implemented in an industrial color flow. They have a less
ambitious motivation: to limit or compensate for the loss of de-
tails caused by clipping algorithms. Clipping yields good results
in terms of saturation but tend to degrade image details in satu-
rated areas. The projection might fail because it projects all non
reproducible colors lying on the line of the projecting direction
onto the same point on the gamut boundary. If in a local area, sev-
eral neighboring pixels lie on a same line of projection but with
distinguishable colors, the local variations that form the spatial
content will be erased (see Fig.1). Similarly, if pixels in a local

Figure 1. HPMinΔE [9] projects all colors lying outside the gamut and on the

line of the projecting direction onto the same point on the gamut boundary,

erasing local image variations.

neighborhood lie on nearby projection lines, they will be mapped
to nearby points on the gamut hull, and the local spatial variations
may be severely diminished. To prevent these degradations, this
family of SGMAs proposes solutions that can be divided in two
groups.

In the first group XSGM by Balasubramanian et al. [10]
gamut maps the original image using a direction of projec-
tion that emphasizes preservation of chroma over luminance.
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The parts of the original image that were clipped are high-pass
filtered and added to the gamut mapped image. The resulting sum
is again gamut mapped using a direction of projection that em-
phasizes preservation of luminance over chroma. Previously con-
ducted psycho-physical evaluations showed that XSGM obtains
good scores but suffers from the presence of halos [11]. Recently,
Zolliker and Simon proposed to improve XSGM by using bilateral
filtering [12]. The use of such filter eliminates the halos produced
in XSGM by the gaussian filters.

In the second group, Meyer and Barth in 1989 [6], Kasson
in 1995 [13] and recently Morovic and Wang [14] proposed in
MSGM4 to first decompose the image in frequency bands. The
low-pass band is gamut mapped then successive clippings are per-
formed during the reconstruction. Results of such an approach
depend both on the algorithm used in the image decomposition
and on the GMAs successively applied.

In both groups, problems may arise when adding high-pass
content to the gamut mapped image: artifacts such as halos and
color shifts might be introduced, except for the most recent ver-
sion of XSGM [12].

Based on the knowledge that can be found in the literature
and on our own experience, we have listed conditions that op-
timal GMAs need to fulfill. First, GMAs need to fully preserve
hue, then preserve lightness and chroma as much as possible. Sec-
ond, they need to preserve spatial information: the color relations
between neighboring pixels must be preserved, as does the bal-
ance between the frequency bands. Third, they need to avoid the
introduction of artifacts such as halos, hue shift or posterization.

In this paper we first introduce a mathematical framework
for adaptive gamut mapping algorithms and show that existing al-
gorithms can be considered as special cases of this framework.
Two new spatially adaptive GMAs are then introduced within this
framework. Finally we proceed to the psychophysical evaluation
of our algorithms by conducting a ranking experiment and demon-
strate their advantages.

Figure 2. Results of different gamut mapping strategies in a sce-

nario where the colors of a pixel and its neighbors lie in a hue plane,

outside the destination gamut. a) Linear compression: considerable de-

saturation, and good preservation of local variations, b) Clipping: maxi-

mal preservation of saturation, loss of all the local variations in the direc-

tion of projection, c) Adaptive Clipping: almost maximal preservation of

saturation, loss of half the local variations in the direction of projection,

d) Non-linear Adaptive Compression: small desaturation, local variations are

preserved but reduced in the direction of projection.

Mathematical framework for adaptive gamut
mapping algorithms

Locally adaptive GMAs often use both the color values of
the pixels and the values of their local surrounding. Multi-scale
decomposition [15] is an adapted framework for such local image
processing and has been used in SGMAs [6,14]. Let note the mul-
tidimensional entities with bold characters. The simplest multi-
scale decomposition is in two bands: the low-pass band color im-
age Ilow contains local means and is obtained by convolution of
the original image Iin with a blurring filter. The high-pass band
Ihigh contains local variations and can be obtained by subtracting
the local mean Ilow from Iin or by dividing Iin by Ilow.

Once the image is decomposed in two bands, several options
are available: Ilow might be re-rendered, its lightness range might
be rescaled, and it might be gamut mapped (function g in Eq.1).
Ihigh might also be adjusted by a scaling factor, spatially filtered
or modified by a more complex function (function k) [16]. Fur-
thermore, the merging of the two adjusted bands can be adjusted
(function f ). The framework can then be described as follows:

Iout = f [g(Ilow),k(Ihigh)], (1)

Iout ∈ GamutDest , (2)

where Iout is the image resulting from the SGMA, GamutDest is
the destination gamut (see Fig.2), f , g and k are the adaptive map-
ping functions. f , g and k should be chosen such that the SGMA
preserves as much as possible the color value of each pixel and
the color relation between neighboring pixels.

Color value versus pixel-neighbors relations, a tradeoff
In the case of Hue-Preserving Minimum ΔE clipping [9],

Iout = HPMinΔE(Iin), with Iin the original image and Iout the
gamut mapped image (see Fig.1). The level of local color varia-
tions Δ(pi

out ,p
j
out) between two neighboring pixels i and j of the

gamut mapped image is likely to be lower than the level of their
local color variations Δ(pi

in,p
j
in) in the original image. This can

lead to major perceived degradations in the details of the image.
To prevent these degradations, SGMAs need to maintain the dis-
tance between each pixel and its neighbors. To do so it might be
necessary to modify the color value of the mapped pixel or the
color value of its neighborhood, or both. A compromise needs to
be found between the preservation of the color value of a pixel
and the preservation of the color relation with its neighbors.

Special cases: existing algorithms
In this subsection, we show that existing algorithms can be

considered as special cases of the above framework:
In Meyer and Barth [6], Ilow is obtained by convolution of

Iin with a gaussian filter. k is the identity function, g a linear scal-
ing function and f a non-linear chroma compression algorithm
followed by a hue and lightness preserving clipping:

Iout = f [g(Ilow)+ Ihigh]. (3)

In MSGM4 [14], Iin is decomposed in 4 bands. Ilow is ob-
tained by convolution with a mean filter of each CAM97s2 J,a,b
color channel [14] and Ihigh1 by subtracting Ilow from Iin. This
operation is repeated two times by substituting Ilow to Iin to ob-
tain Ihigh2 and Ihigh3. k is a linear compression using the ratio of
the reproduction medium and original medium lightness ranges.
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g is a sigmoidal compression on the lightness J of Ilow fol-
lowed by HPMinΔE, and f is clipping toward the 50% greypoint
(SCLIP) applied sequentially after each step of the reconstruction:

Iout = f [ f [ f [g(Ilow)+k(Ihigh1)]+k(Ihigh2)]+k(Ihigh3)]. (4)

In Kasson [13] the input image Iin is also filtered, exploit-
ing known spatial-frequency characteristics of the HVS. In this
case, f g and k are different for L and c; h is preserved. fL
is a luminance-preserving clipping , gL is a chroma-preserving
clipping followed by a chroma-dependent weighted sum. fc is a
luminance-dependent scaling followed by a luminance-preserving
clipping, kL, gc and kc are the identity function:

Lout = fL[gL(Ilow)+Lhigh] , cout = fc[cin.(Lout/Lin)]. (5)

In XSGM [10], there is no low-pass filtering prior to the ini-
tial gamut mapping and g is applied directly to Iin. g is HPMinΔE
clipping, emphasizing the preservation of chroma over luminance.
Ihigh contains the parts clipped by g: Ihigh = Iin −g(Iin), k is a sim-
ple high-pass filtering of Lhigh. f is a clipping toward the point on
lightness axis with the luminance of the cusp (CUSP), emphasiz-
ing the preservation of luminance over chroma:

Iout = f [g(Iin)+k(Ihigh)]. (6)

In Zolliker and Simon [12], Eq.6 is still valid. f is a clipping
GMA and g is any point-wise GMA. k is a more elaborated full
color high-pass filtering: the local mean is obtained with bilateral
filtering (see Eq.6).

To illustrate the optimization approach, we observe similar-
ity in Nakauchi et al. [7] with XSGM: there is again no low-pass
filtering prior to g; f and g are HPMinΔE; Ihigh contains the parts
clipped by g: Ihigh = Iin − g(Iin). k is a convolution with contrast
sensitivity functions and produces the “Perceptual Difference”:
PD = k(phigh). In [7], successive clipping and updating of Iout

occur until the decrease of PD falls under a given threshold ε:

Iout(o) = f [g(Iin)+k(Ihigh)], (7)

Iout(i+1) = f [Iout(i),PDi], while (PD(i) − PD(i−1)) > ε. (8)

Notice that in all the described SGMAs, if a mapped pixel of
Ilow = g(Ilow) lies on the gamut boundary, after the sum of Ilow
with k(Ihigh) the resulting pixel in Iout might end up lying outside
GamutDest , the destination gamut. Hence a second gamut map-
ping by function f is needed.

In the following we propose two new SGMAs which follow
the framework as in Eq.1 where g is a point-wise GMA, f and k
are locally adaptive functions.

Proposed spatial and color adaptive algo-
rithms

Since it is not easy to determine the appropriate HVS model
for gamut mapping [4,17,18] and because optimization processes
are too slow to be included in an industrial workflow, we propose
in this section two new gamut mapping algorithms which belong
to the second group of the second family. However, because their
process is fully spatially adaptive and aims at getting an optimal
reproduction, they also share properties with the first family. Our
adaptive algorithms are described by Eq.1, the diagram in Fig.3
and by the following process:

• Conversion of the original image to the CIELAB color space
using the absolute intent of the input ICC profile: Iin.

• Decomposition of the CIELAB image in two bands using
bilateral filtering (BF): Ilow and Ihigh.

• HPMinΔE clipping (g) of the low-pass band Ilow: Ilow.
• Adaptive merging ( f and k) of Ilow and Ihigh: Iout .
• Conversion to the CMYK encoding of the output printer us-

ing the relative colorimetric intent of its ICC profile.

Figure 3. Diagram of proposed framework for SCACOMP and SCACLIP.

Multiscale decomposition
Pixel-neighbors relation

To compare the values of the pixels with the values of their
local surrounding, we decompose the image in two bands. The
low-pass band Ilow contains local means. Note that degradation
by clipping mostly occurs in a neighborhood in which several pix-
els have nearby color values (see Fig.1). Consequently the rela-
tion between a pixel and its neighbors with similar values needs
to be carefully handled. Therefore we compute a weighted local
mean where each neighbor is given a weight, which is function of
both the geometric distance and the colorimetric ΔEab distance to
the central pixel. This mean is computed using a five-dimensional
bilateral filtering algorithm.

5D bilateral filtering in CIELAB space
5D Bilateral Filtering (BF) in the CIELAB space, proposed

by Tomasi and Manduchi in [19], is a combined spatial do-
main and color range filtering. Let LBF = BF(L), aBF = BF(a),
bBF = BF(b) denote the three channels of the filtered image.
The LBF value of pixel i, Li

BF , can be obtained as follows (similar
expressions for ai

BF et bi
BF ):

Li
BF =

∑
j∈Iin

[r(xi
,x j) s(pi

,p j) L j]

∑
j∈Iin

[r(xi
,x j) s(pi

,p j)]
, (9)

where Iin is the original image, r(xi
,x j) measures the geometric

closeness between the locations xi of pixel i and x j of a nearby
pixel j. s(pi

,p j) measures the colorimetric similarity between the
colors (Li, ai, bi) and (L j , a j , b j) of pixels i and j.
In our implementation, r(xi

,x j) and s(pi
,p j) are gaussian func-

tions of the euclidean distance between their arguments:

r(xi
,x j) = e− 1

2 ( ||xi−x j ||
σr

)2
, s(pi

,p j) = e− 1
2 ( ΔEab (pi

,p j)
σs

)2
, (10)

where the scale parameters σr and σs play an essential role in
the behavior of the filter. Tomasi and Manduchi explore different
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values, and present black and white images processed with σr =
3pixels and σs = 50ΔE, yet the size of the processed images are
not specified. The setting of σr should depend on the image size
and the conditions of visualization. Zolliker and Simon [12] have
applied the filter in their algorithm with σr = 4% of the image
diagonal and σs = 20ΔE. They found that values of σr in the
range of [2 - 5]% of the image diagonal and σs values in the range
of [10-25] ΔE show good performance. In our implementation,
we have set the values to σr = 1% of the image diagonal and
σs = 25ΔE (for images printed at 150 dpi, at the size [9-15] cm
by [12 - 20] cm, viewed at a distance of 60 cm).

Decomposition in two bands

Figure 4. Computation of the low-pass band Ilow.

First, the original CIELAB image is converted to the polar
representation CIELCH, i.e. Lightness, chroma and hue. To com-
pute the low-pass band Ilow, we propose to filter only the two
channels Lin and cin of the original image Iin, using 5D bilat-
eral filtering as described above (Eq.9-10). The hin channel is not
filtered, to keep the hue unaltered by our SGMA. Nevertheless,
since the 5D bilateral filter involves ΔEab distance, the hue will
be well taken into account in the filtering of Lin and cin channels.
The low-pass band Ilow is thus defined as:

Ilow = (LBF ,cBF ,hin), (11)

where LBF = BF(Lin) and cBF = BF(cin) (see Fig.4).
The high-pass band Ihigh is then calculated by taking the dif-

ference of Iin and the low-pass band Ilow:

Ihigh = Iin − Ilow = (Lin − LBF ,cin − cBF ,0). (12)

Figure 5. Computation of the high-pass bands Lhigh and chigh of channels

Lin and cin. The hue channel h is not filtered.

Clipping of the low-pass band
The first step of our adaptive algorithms is the gamut map-

ping of the low-pass band. The goal of this mapping is to preserve
as much as possible the color of each pixel, leading to the use of
g = HPMinΔE resulting in the clipped image Ilow:

Ilow = HPMinΔE(Ilow). (13)

Note that the hue channel is left unaltered by HPMinΔE:
hlow = hlow = hin. The next step is the adaptive merging of Ilow
and Ihigh involving the functions f and k.

Adaptive merging of the high-pass band
We aim to merge the mapped low-pass band Ilow with the

high-pass band Ihigh while preserving as much as possible the lo-
cal variations contained by Ihigh. We propose two locally adaptive
algorithms to map the high-pass content by taking into account the
local 5D neighborhood defined by the bilateral filtering.

Discussion
According to the properties of the bilateral filtering (Eq.9-

10), local spatial variations contained by Ihigh present only low
color variations. Therefore, each pixel and its neighbors are more
likely to be projected to a same little area of the gamut boundary
if f is a clipping GMA, resulting in a strong diminution of the
variations present in Ihigh. To avoid this situation, f and k need
to be locally adaptive functions with the following objectives for
a pixel pout of the resulting image Iout :

• pout is as close as possible to pin of Iin,

• the color variations of pout with its neighbors are the closest
to the color variations of pin with its neighbors,

• pout ∈ GamutDest∩ ℘ (plane of constant hue hin of pin).

Since the first two requirements might be antagonistic, pout results
of a compromise. A weighted sum can be used here:

{
pout ∈ (GamutDest ∩℘),
pout = argmin

p
[w Δ(p,pin)+(1− w)Δ(phigh,(p − plow))],

where w ∈ [0,1] is a weight.

• If w = 1, k becomes HPMinΔE cliping.
• If w = 0, only the color variations between the pixel and its

neighbors will be preserved, not the pixel value.
• In intermediate cases w ∈]0,1[, the result might be obtained

by an optimization algorithm.

Fast solutions can be deployed to maintain the computational time
at a reasonable level. A new tradeoff comes to light: computation
time versus quality of the result.

In the next sections, we propose two alternative and fast algo-
rithms that provide approximations of the best obtainable results.
They are based on the same framework: decomposition in two
bands Ihigh and Ilow using 5D bilateral filtering, followed by clip-
ping of the low-pass band Ilow. Then adaptive merging of Ihigh
and Ilow using local adaptive implementation of the two families
of pointwise GMAs: compression and clipping.
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Spatial and color adaptive compression (SCA-
COMP)

We propose an adaptive compression algorithm to preserve
the color variations between neighboring pixels contained by
Ihigh. The concept is to project each pixel lying outside GamutDest

toward the center, more or less deeply inside the gamut depending
on its neighbors.

First, Ihigh is added to Ilow and the sum is mapped using
SCLIP:

IS = SCLIP(Ilow + Ihigh). (14)

Then we compute the difference Io f f set between IS and the newly
constructed image (Ilow + Ihigh):

Io f f set = IS − (Ilow + Ihigh). (15)

At the given spatial position xi, for each pixel j in the neigh-
borhood, we project the color vector p j

o f f set on the direction of

pi
o f f set . If the result is greater than the norm ||pi

o f f set ||, p j is

taken into account and pushes pi
S ∈ IS toward the 50% greypoint

of GamutDest (see Fig.6). Each neighbor’s contribution to the
shifting of pixel i is weighted by w j

BF defined by BF (see Eq.9):

w j
BF = r(xi

,x j) s(pi
,p j)

∑
j∈Iin

(r(xi
,x j) s(pi

,p j))
, (16)

and:

pi
out = (pi

low
+pi

high) + wi
shi f t pi

o f f set , (17)

where:

wi
shi f t = ∑

j∈Iin

w j
BF max

(p j
o f f set .p

i
o f f set

||pi
o f f set ||

2
,1
)
, (18)

“.” denotes the scalar product and wi
shi f t is superior or equal to 1.

Therefore the resulting color value lies in the gamut, between the
gamut boundary and the 50% greypoint of GamutDest .

Spatial and color adaptive clipping (SCACLIP)
To maintain the content of Ihigh, we also explore the possi-

bility of setting the direction of the projection as a variable: for
each pixel the optimal mapping direction will be chosen so that
the local variations are best maintained.

To get faster results, the choice can be restricted to a set of
directions. In our implementation, the mapping direction will
be chosen within directions proposed in published algorithms,
i.e. between f1 = HPMinΔE , f2 = CUSP and f3 = SCLIP [1].
First, Ihigh is added to Ilow and the 3 mappings fn, n ∈ {1,2,3},
are run (see Fig.7). Then for each mapping the difference Ihigh n
between the result of the mapping and Ilow is computed. This
difference can be regarded as the result of the mapping of Ihigh:

Ihigh n = fn(Ilow + Ihigh)− Ilow , n ∈ {1,2,3} (19)

In Ihigh we compute the energy Ei
high corresponding to the

weighted sum of the norms of p j
high for pixels j in the neighbor-

hood of the pixel i, and similarly the energy Ei
n in each Ihigh n:

Ei
high = ∑

j∈Iin

w j
BF ||p j

high|| , Ei
n = ∑

j∈Iin

w j
BF ||p j

high n
||, (20)

where w j
BF are the weights of the bilateral filter used in the de-

composition of the image (see Eq.16).
Then the direction of projection for which Ei

n is the closest
to Ei

high is selected for the pixel i:

pi
out = fselect(pi

low
+pi

high), (21)

select = argmin
n

(|Ei
n − Ei

high|), n ∈ {1,2,3}. (22)

Because the process is scanning the image pixel by pixel,
some pixels p j of the neighborhood have been processed before.
For these pixels, p j

high n
are replaced by results p j

out in the compu-

tation of Ei
n. Therefore, anterior decisions are taken into account

and Iout depends on the processing order of the pixels.

Figure 6. SCACOMP: p1
o f f set (j=1) contributes to the shifting of (pi

low
+pi

high)

toward the 50 % greypoint, unlike p2
o f f set (j=2).

Figure 7. SCACLIP: (pi
low

+pi
high) is mapped toward 3 directions, the optimal

direction will be chosen so that the local variations are best maintained.

Psychophysical experiment
In this section, we present our evaluation of selected

SGMAs by a psychophysical experiment following the CIE’s
guidelines [9]. A total of 22 images were used in this experiment:
PICNIC and SKI as recommended by the CIE, along with 6 im-
ages from the Kodak Photo CD Sample and 4 sRGB images from
the ISO 12640-2:2004 standard [20]. 8 images SCID-LAB from
the draft of the ISO 12640-3 converted to Adobe RGB 98 using
relative colorimetric intent, and 2 Adobe RGB 98 images (cour-
tesy of Pr. Farup). These images were converted to CIELAB
using the absolute colorimetric intent of their profiles. All the
images were then gamut mapped using 5 different GMAs. The
destination gamut was the gamut of an OCE TCS-500 printer us-
ing OCE Standard paper and the printer’s highest quality setting.
The resulting images were then converted from CIELAB to the
device CMYK using the relative colorimetric intent. In order to
get high resolution prints, the processed images were printed on
an Epson Stylus Pro 7600 using Epson Photo Luster Paper on for-
mats [9-15] cm by [12-20] cm.
The following 2 GMAs and 3 SGMAs have been evaluated:
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• HPMINΔE, hue-angle preserving minimum ΔE∗
ab clipping,

• SGCK, chroma-dependent sigmoidal lightness mapping and
cusp knee scaling performed with the software ICC3D [21],

• Z-HPMINΔE [12], implemented using HPMinΔE as the
pointwise GMA,

• SCACOMP, our adaptive compression algorithm,
• SCACLIP, our adaptive clipping algorithm.

In our rank order experiment the test panel was constituted by 7
female and 8 male. The observers were presented with a reference
image on an EIZO ColorEdge CG221 display at a Color Temper-
ature of 6500 Kelvins, along with 5 printed gamut-mapped can-
didate in a viewing booth GretagMacBeth The Judge II at a CT
of 5000 Kelvins. The observers viewed simultaneously the mon-
itor and the printed images from a distance of approximately 60
cm. For each image, the observers were asked to arrange the can-
didates according to the decreasing quality of the reproduction
with respect to the original reference image. It was suggested
to make their decision based on different parts of the image, to
evaluate the fidelity of the reproduction of both colors and de-
tails, and look for possible artifacts. Thus it is the accuracy of
reproduction of the images which was compared, not the pleas-
antness. Results in Fig.8 show that on average over the 22 im-

−2

−1

0

1

2

HPMINDE SGCK Z−HPMINDE SCACLIP SCACOMP

Figure 8. Z-scores resulting of our ranking experiment, average over 22

images and 15 observers.

ages and 15 observers, SCACLIP obtains the best scores, followed
by Z-HPMINΔE, SCACOMP, SGCK and HPMINΔE. On average
over the 22 images, 12 of the 15 observers ranked SCACLIP first,
two ranked Z-HPMINΔE first, and one ranked SCACOMP first.
When considering only the 10 Adobe RGB 98 images, the rank-
ing order changes: SCACLIP is first, followed by SCACOMP,
Z-HPMINΔE, SGCK and HPMINΔE.

Conclusions
A framework for adaptive mapping has been introduced.

Within this framework, two new locally adaptive spatial gamut
mapping algorithms have been presented, SCACOMP and SCA-
CLIP, which offer a nice compromise between the preservation of
the color values and the preservation of the color relation between
neighboring pixels. Psychophysical experiments show that SCA-
CLIP outperforms both pointwise GMAs and our implementation
of Z-HPMINΔE.
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