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Abstract 
Color lookup tables (CLUTs) that are embedded in printer 

firmware consume precious flash memory. In order to conserve 
memory and thereby reduce cost, it is desirable to compress 
CLUTs prior to storage and restore tables as required. In this 
paper, we investigate methods for lossless compression of CLUTs. 
We demonstrate that, through suitable pre-processing of data, 
significant improvements in compression performance can be 
obtained as compared to a direct application of lossless data 
compression methods. In particular, the gains in performance with 
the proposed methods are accomplished by exploiting the 
characteristics of CLUT data and utilizing a combination of 
hierarchical differential encoding and re-ordering for the pre-
processing. Experimental results over a representative data set 
indicate that the proposed methods can result in a 26% reduction 
in memory requirements in comparison to direct compression. As 
compared to uncompressed tables this corresponds to a memory 
saving of 68%.  

Keywords: Color look-up table, compression, ICC Profile, space 
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1. Introduction 
Color lookup tables (CLUTs) that provide transformations 

between various color spaces are extensively used in color 
management, common examples being the transformations from 
device independent color spaces (such as CIELAB) to device 
dependent color spaces (e.g. CMYK) and vice versa.  For color 
printers, these CLUTs are often embedded in the printer hardware, 
where they require relatively expensive flash memory for the 
purpose of storage. In these scenarios, the firmware memory 
requirements for storing these CLUTs can become a concern, 
particularly as the number of the look up tables in color devices 
increases due to the need for supporting multiple color spaces, 
print media, and preferences. The trend toward finer sampling of 
the spaces and larger bit depths also results in an increase in table 
sizes, further exacerbating these memory concerns. Compression 
of these CLUTs therefore becomes desirable for the purpose of 
conserving memory. In this paper, we investigate methods for 
CLUT compression, with the specific objective of improving 
compression performance over what is achievable with generic 
data compression methods. 

Though firmware memory is the primary motivation for our 
research in this paper, the same concerns of memory and storage 
space are applicable for CLUTs that are embedded in color 
documents (for e.g., ICC source profiles). In applications where 
embedded profiles are utilized, the increased size due to the 

embedded profiles represents an overhead, which CLUT 
compression methods can help mitigate. As color workflows move 
from the current default sRGB assumption, to more general color 
spaces the use of embedded profiles is likely to increase. The 
reduction in overhead due to improved CLUT compression is also 
likely to offer a benefit in these applications. 

Although there are no references for CLUT compression in 
prior literature, compression methods have been extensively 
studied for a number of applications (see for example [1]). 
Compression methods can be categorized as lossless or lossy. The 
former class of methods is used extensively for data compression, 
where it is required that the recovered data from the compressed 
representation must match the original data exactly, i.e., the 
decompressed data must be mathematically equal to the original 
data. Lossy compression methods on the other hand are commonly 
used in applications where requirement of mathematical equality 
between the compressed and decompressed forms of data can be 
relaxed and distortions that are perceptually negligible (or small) 
can be tolerated. Speech, audio, image, and video communication 
are common examples of such applications. In this paper, we focus 
our attention on lossless compression techniques for CLUTs1. 

In Section 2 we provide a brief overview of lossless 
compression methods which motivate the development of a 
number of methods for CLUT compression that are presented in 
Section 3. Experimental results presenting the performance of 
these methods are presented in Section 4. Concluding remarks 
form Section 5. 

2. Lossless Data Compression 
Techniques for lossless data compression lie in one of two 

main categories: the first class of methods attempts to build an 
(adaptive) dictionary of “patterns” observed in the data and 
represents specific data values encountered as pointers to the 
dictionary location in which the values can be found. The LZW 
[3,4] compression method and its variants, including those used for 
zip files[1], are common examples of this first class of methods. 
These methods perform extremely well when the data contains 
frequent and long repeats since the dictionary representation 
becomes extremely efficient under these circumstances. A second 
class of methods operates by modeling the probability distribution 
of observed data values. In order to achieve compression, 
frequently occurring symbol values are assigned shorter binary 
representations and longer representations are used for infrequent 
symbol values (while maintaining distinctness that allows 

                                                 
1 Fundamentally, this is not a restriction and one may consider 
lossy methods for CLUT compression. These may be particularly 
attractive for finely sampled and high bit depth tables. 
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reconstruction of the original values from these representations). 
Huffman coding and arithmetic coding [1, 6] are representative of 
this class of techniques. 

3. Hierarchical CLUT Compression 
Both classes of lossless compression methods described in the 

preceding section operate on a sequential “stream” of input data. In 
order to apply these methods to multi-dimensional constructs, such 
as CLUTs, it is necessary to arrange the multi-dimensional data in 
the form of a one-dimensional stream, a process that we will refer 
to as serialization of the CLUT. In general serialization is 
accomplished by defining the sequence in which the nodes of the 
multi-dimensional LUT are traversed, producing the one-
dimensional stream. Typically, the order in which data is stored 
(e.g. row-major/column-major) in computer memory constitutes 
the natural sequence for obtaining the one dimensional data stream. 
However, from the characteristics of the compression methods 
outlined in the preceding section, it is apparent that improved 
compression may often be obtained simply by rearranging the data. 
This will be the case, if for instance, the re-ordering increases 
repetition within the data. Though it is feasible to determine a data 
adaptive re-ordering [5], it can be computationally demanding, 
making it unsuitable for the target application. In addition, 
adaptive ordering requires that the specification of the order in 
which the data was rearranged also be stored in the compressed 
representation so that this may be undone during decompression. 
Instead, we propose a simpler alternative for data rearrangement 
that utilizes the knowledge that the data represents a CLUT. 

The data in a CLUT invariably represents a smooth and 
continuous transform from the space of input variables to the space 
of output variables.  This is clearly the case for forward device 
tables that represent the response of a physical device (in some 
colorimetric space) as a function of the control values that define 
the LUT indices. For inverse tables, that map device independent 
colorimetric values to corresponding device control values, 
smoothness and continuity are again necessary requirements in 
order to ensure reasonable behavior in the presence of device drift. 
Thus, for instance, a smooth black generation function is necessary 
when computing the color correction table for a printer [12]. 

Space Filling Curves for Serialization 
Since the data in the CLUT represents a continuous transform, 

nodes of the CLUT that are close to each other, contain output 
values that are also close to each other. This characteristic, while 
clearly desirable from a compression perspective, is true only in 
the multi-dimensional representation of the LUT and the one 
dimensional serialization of the data into a sequence for the 
purpose of compression does not necessarily preserve this trait. 
Specifically, consider Fig. 1 where a 2-D LUT is used for 
illustration. Fig. 1 (a) depicts the natural “raster-scan” order 
corresponding to typical ordering of the LUT data in memory. A 
serialization of the data in this order results in a jump from the end 
of one line to the start of the next, since these LUT nodes are not 
adjacent, this in all likelihood will cause a discontinuity in the 
observed values that will likely reduce data repetition in the one-
dimensional stream and adversely impact compression 
performance. Figure 2 (a) illustrates this point where a segment of 
serialized CLUT data obtained through a traversal in this natural 

“raster” order is shown, observe that the LUT output values show 
several discontinuous jumps including a abrupt large jump at index 
4914. In order to eliminate these discontinuities that are artificially 
induced by the data serialization, we propose instead to obtain the 
one-dimensional data through the traversal of the multi-
dimensional CLUT along a space filling curve [2, 7, 8, and 9] that 
assures that the data is traversed in a manner that preserves 
continuity in the input space of the multi-dimensional CLUT. 
Figures 1 (b) and (c) illustrate the CScan and Hilbert [10] Space 
filling curves as examples. Figure 2 (b) illustrates a segment of 
CLUT data serialized according to the CScan order. Note that (as 
may be expected from our preceding discussion) the resulting data 
stream does not have any major discontinuities. In addition to 
preservation of continuity, a desirably quality of space filling 
curves is the preservation of contiguity, i.e., the multi-dimensional 
data nodes that are close to each other should appear close to each 
other in the serialized data. We can see that in this respect, the 
Hilbert curve is preferable to the CScan. 
 
 
 
 
 
 
 

a. Raster                         b. CScan                 c. Hilbert 

Figure 1: 2-D Examples of Space Filling Curves 

Hierarchical Differential Encoding 
Differential encoding of data is a technique commonly 

employed in data compression. For a one dimensional data 
sequence, differential encoding operates by computing differences 
among adjacent values, mathematically specified by the relation 

 
Yn = Xn – Xn-1 and Y0 = X0                                          (1) 

 
where Xn and Yn denote, respectively, the input and output of the 
differential encoder at “time” n. When the input data is highly 
correlated, the process of differential encoding reduces the 
variance of the data.  This therefore increases the propensity for 
repetition of data values, thereby aiding lossless compression. 
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      Figure 2: Serialized Segment of CLUT Data for Raster and CScan orders. 

Note discontinuity in raster order is not present in CScan order. 
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Noting that the CLUT is in fact multi-dimensional, we 
propose a hierarchical extension of the conventional differential 
encoding method wherein the differential encoding is performed at 
multiple levels of the hierarchy corresponding to the dimensions of 
the CLUT, viz, node, plane, cube, hyper-cube, etc. Furthermore, 
the differential encoding may also be recursively performed at 
different levels of the hierarchy. The resulting algorithm is 
summarized in Matlab-style vectorized pseudo-code in Fig. 3. We 
refer to this as recursive hierarchical differential encoding (RHD). 
The alternative algorithm obtained without the recursion will be 
referred to as non-recursive hierarchical differential (NRHD) 
encoding which can be expressed similarly in algorithmic form.     

The process of RHD may be interpreted as encoding the LUT 
transformation in terms of its finite differences along the 
coordinates corresponding to the input axes of the CLUT. For 
typical CLUTs, values at adjacent nodes are highly correlated since 
the CLUT represents a relatively fine sampling of a smooth 
transformation between different color spaces.  As a result, the 
output from the differential encoding process has a significantly 
lower variance than the input. This can be seen in Fig. 4, where the 
histograms of the input and the output of RHD are shown, 
respectively, in parts (a) and (b). Note the significant reduction in 
variance in the RHD encoded data in comparison to the original 
CLUT data. 

 
diff =clut; 
for i = q:-1:2  { diff(i, 1:q,1:q) -= diff(i-1, 1:q,1:q); } 
for i=1:q { 
   for j = q:-1:2   
    { diff(i, j,1:q) -= diff(i, j-1,1:q); } 
       for j=1:q { 
          for k = q:-1:2 
           { diff(i, j,k) -= diff(i, j,k-1); } 
      } 
} 

a. 

 
lut = construct; 
for j = 1:q { 
    for k = 1:q { 
         for l = 2:q { lut(j,k,l) = lut(j,k,l) + lut(j,k,l-1); } 
                     } 
    for k = 2:q { lut(j,k,1:q) = lut(j,k,1:q) + lut(j,k-1,1:q); } 
                } 
for j = 2:q { lut(j,1:q,1:q) = lut(j,1:q,1:q) + lut(j-1,1:q,1:q); } 
 

b. 

 

Figure 3: Recursive Hierarchical Differential (a) Encoding and (b) Decoding 

algorithm for a qxqxq 3D CLUT. 

Compression 
Once CLUT data is pre-processed through the hierarchical 

differential encoding and data reordering steps, it may be 
compressed by a lossless compression method. For this purpose we 
consider four different lossless compression methods: 

(i) gzip [11]: A dictionary based compression method. 
(ii) Adaptive Arithmetic Coding (AAC)[ 1, 6]: A probabilistic 
modeling based technique. 
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Figure 4: Histogram of CLUT Data (a) before and (b) after NRHD coding 

  
(iii) bzip2 [13]: A compressor that combines Burrows 
Wheeler block sorting transform and Huffman Coding. 
(iv) Lempel Ziv Markov Algorithm (LZMA)[14]: A recent 
dictionary based compression method with a variable 
compression dictionary size.  
LZMA and bzip2 methods are recently developed methods 

that offer better compression performance than gzip and AAC. 
LZMA, in particular, is among the best performing lossless 
compression methods available today. 

4. Experimental Results     
To assess the performance of the proposed method, it was 

implemented in C++ and MATLAB. A collection of CLUTs 
representative of a typical printer configuration was used to 
perform the evaluation. All CLUTs had 8 bit values for each output 
channel. The tables included: 

a) 4 forward CMYK device tables (mapping to device 
independent color space) each of size 174 x 3, totaling 1,002,252 
bytes. These correspond to three standard CMYK tables (SWOP, 
EURO, and DIC) and one device response table (obtained by two 
different methods), 

b) 4 forward RGB device tables, each of size 173 x 3, totaling 
58,956 bytes, corresponding to different RGB input spaces, and  
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c) 8 pairs of inverse printer (correction) tables (mapping from 
device independent color space to printer CMYK), each of size 173 
x 4, for a total of 314,432 bytes. The 8 pairs correspond to the 8 
different media choices for the printer (transparency, plain paper, 
coated paper, etc) and two elements in each pair differed in their 
black generation. 

The evaluation of compression was performed using the 
NRHD and RHD encoding methods along with one out of CScan, 
Hilbert and Raster Scan options for the serialization of CLUT data.  
Four compression methods – LZMA, bzip2, gzip, and adaptive 
arithmetic coding (AAC) – were evaluated. In addition to the 
proposed pre-processing based methods, direct compression of the 
tables was also performed using each of these methods for the 
purpose of benchmarking our performance improvement. 

From the information on the sizes of the different tables 
provided above, we see that the CMYK tables account for a major 
part (72.86%) of the CLUT data. We therefore begin by comparing 
the performance for different methods over these tables.  We first 
demonstrate the advantage of the proposed methods over direct 
compression. Table 1, compares the performance of proposed 
methods (NRHD + CScan + Compression) against direct 
compression for the four CMYK tables. From the tabulated values 
we can see that the proposed methods perform uniformly and 
significantly better than direct compression. Furthermore, we see 
that the performance across tables is rather similar and therefore 
averaged values over the tables may be used to draw useful and 
general conclusions. 

Next we consider the performance across the different 
variants of the proposed methods. Table 2 lists the average 
compression ratios over the CMYK table data set for the different 
possible methods consisting of one of NRHD/RHD for differential 
encoding, Raster/CScan/Hilbert for data re-ordering, and 
LZMA/bzip2 for compression. From a comparison of the numbers 
in Tables 2(a) and 2(b), it is apparent that the NRHD + CScan + 
LZMA method performs best with NRHD + Hilbert Scan + LZMA 
as a fairly close second.    

In Table 3 we compare the performance of the 
aforementioned two methods against direct compression over the 
complete data set of printer tables. Once again from the 
compression ratios enumerated in Table 3, we see that the 
proposed methods offer significant gains over direct compression. 
The best performing method (NRHD + CScan + LZMA) offers a 
compression ratio of approximately 3.2, which represents a 
68.32% reduction in size over the uncompressed binary 
representation and a 25.69% reduction in size in comparison with 
direct compression. 

Finally, in order to determine the impact of finer sampling on 
compression performance, we also conducted the experiments 
again using tables of size 334 and 333 respectively, instead of 174 

and 173. The performance of the different methods relative to each 
other follows the same trends as observed for the coarsely sampled 
CLUTs. We therefore present only the summary results over the 
ensemble of printer CLUTs for the better performing methods that 
were included in Table 3. Table 4 lists the average compression 
ratios over the complete ensemble of printer CLUTs for direct 
compression with LZMA/bzip2 and for NRHD with Hilbert/CScan 
reordering followed by LZMA. Comparing the tabulated 
compression ratios against the corresponding values in Table 3, we 

see that much higher compression ratios (better compression 
performance) are obtained for the finer sampled versions of the 
CLUTs. The average compression ratio for the best method 
(NRHD + CScan + LZMA) over the complete data set in Table 4 
was found to be 4.8457 as opposed to 3.1567 listed in Table 3. 
This illustrates that with finer sampling, compression using the 
proposed method offers greater gains, partly offsetting the increase 
in table size.  

The finer sampling used here is more representative of ICC 
profiles than the coarse CLUTs considered for our results in Tables 
1-3 (which were more representative of hardware CLUTs). Thus 
the numbers in Table 4 illustrate that CLUT compression can 
significantly reduce the memory and storage overhead caused by 
profile embedding in documents. For our data set, the compressed 
profile CLUTs takes only 20.64% of the space required by their 
uncompressed versions. 

5. Conclusion 
Significant gains in Color Lookup Table (CLUT) 

compression can be obtained through pre-processing of CLUT data 
prior to compression. Utilizing the knowledge of CLUT structure 
for hierarchical differential encoding and re-ordering the data using 
a space filling curve can reduce storage requirements significantly. 
For the best performing LZMA method the savings are 
approximately 29% when compared with direct compression 
(without preprocessing) and approximately 68% when compared to 
uncompressed binary tables. The methods proposed here are 
computationally simple and readily implemented in printer 
firmware without an undue overhead in computation. With finer 
sampled CLUTs the gains are even more significant. 

Future work will investigate the extension of this algorithm to 
higher bit depths, and the use of improved methods of prediction. 
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Table 1: Compression ratios for direct compression and hierarchical differential (NRHD + CScan) compression across 4 forward 
CMYK device tables. Each uncompressed table size is 174 x 3 = 250563 bytes 

Compression method 
(Direct) NRHD + CScan + 

 
CLUT 

gzip AAC bzip2 LZMA gzip AAC bzip2 LZMA 
Device 1 1.7637 1.1203 2.1412 2.4655 2.6302 2.3968 2.8312 3.0657 

DIC 1.8214 1.2121 2.1848 2.2511 2.5026 2.3895 2.6648 2.8933 
EURO 1.9284 1.1740 2.2979 2.3021 2.7354 2.5254 2.9591 3.2286 
SWOP 1.9155 1.2640 2.2814 2.4533 2.8639 2.2990 3.2487 3.4485 

 

Table 2: Average compression ratios for Recursive Hierarchical Differential (RHD) and Hierarchical Differential (NRHD) Compression 
methods. Averages are computed over 4 forward CMYK device tables, where the size of each table is 250563 bytes in uncompressed 
format. 

Preprocessing 
RHD + NRHD + 

 
Compressor 

CScan Hilbert Raster CScan Hilbert Raster 
gzip 2.3125 2.3012 2.3038 2.6830 2.6361 2.2903 
AAC 2.6257 2.6330 2.6288 2.4027 2.4076 2.3456 
bzip2 2.3835 2.3125 2.3669 2.9260 2.8485 2.3669 
LZMA 2.5784 2.5751 2.5612 3.1458 3.0650 2.8272 

 

Table 3: Compression ratios (total uncompressed bytes / total compressed bytes) observed over a representative data set of printer 
CLUTs with 17 nodes along each input dimension of the CLUT. The total size of the uncompressed data for the full set of CLUTs is 
1375640 bytes. The best method (NRHD + CScan + LZMA) results in a saving of 1.57 x105 bytes over direct compression (a 25.97% 
reduction) for the full CLUT data set. 

Data set 
Input tables 

 
Compression 

 Methods CMYK RGB 
Output 
 tables 

Full set  
of tables 

LZMA 2.3680 1.6543 2.4126 2.3370 Direct  
Compression bzip2 2.3620 1.6866 1.9537 2.2095 

NRHD + CScan + LZMA 3.1458 2.2398 3.4237 3.1567 
NRHD + Hilbert + LZMA 3.0650 2.2154 3.0409 3.0109 

15th Color Imaging Conference Final Program and Proceedings 265



Table 4: Compression ratios (total uncompressed bytes / total compressed bytes) observed over a representative data set of printer 
CLUTs with 33 nodes along each input dimension of the CLUT. The total size of the uncompressed data for the full set of CLUTs is 
16862264 bytes. The best method (NRHD + CScan + LZMA) results in a saving of 8.65 x105 bytes over direct compression (a 19.62% 
reduction) for the full CLUT data set. 

Data set 
Input tables 

 
Compression 

 Methods CMYK RGB 
Output 
 tables 

Full set  
of tables 

LZMA 3.9886 2.6464 3.2635 3.9233 Direct  
Compression bzip2 3.8235 2.7399 3.2265 3.7703 

NRHD + CScan + LZMA 4.9065 3.7745 4.1444 4.8457 
NRHD + Hilbert + LZMA 4.7932 3.5082 3.9471 4.7249 
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