
Hierarchical Compression of Color Look Up Tables
Aravindh Balaji S.R.*, Gaurav Sharma*+, Mark Q. Shaw ‡, and Randall Guay ‡
* Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627-0126, USA
+ Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14627-0126
‡ Hewlett Packard Company, MS 227, 11311 Chinden Blvd, Boise, Idaho, 83714 USA
rajagopa@ece.rochester.edu, gaurav.sharma@ rochester.edu, mark.q.shaw@hp.com, and randall.guay@hp.com

Abstract
Color lookup tables (CLUTs) that are embedded in printer

firmware consume precious flash memory. In order to conserve
memory and thereby reduce cost, it is desirable to compress
CLUTs prior to storage and restore tables as required. In this
paper, we investigate methods for lossless compression of CLUTs.
We demonstrate that, through suitable pre-processing of data,
significant improvements in compression performance can be
obtained as compared to a direct application of lossless data
compression methods. In particular, the gains in performance with
the proposed methods are accomplished by exploiting the
characteristics of CLUT data and utilizing a combination of
hierarchical differential encoding and re-ordering for the pre-
processing. Experimental results over a representative data set
indicate that the proposed methods can result in a 26% reduction
in memory requirements in comparison to direct compression. As
compared to uncompressed tables this corresponds to a memory
saving of 68%.

Keywords: Color look-up table, compression, ICC Profile, space
filling curve, differential encoding

1. Introduction
Color lookup tables (CLUTs) that provide transformations

between various color spaces are extensively used in color
management, common examples being the transformations from
device independent color spaces (such as CIELAB) to device
dependent color spaces (e.g. CMYK) and vice versa. For color
printers, these CLUTs are often embedded in the printer hardware,
where they require relatively expensive flash memory for the
purpose of storage. In these scenarios, the firmware memory
requirements for storing these CLUTs can become a concern,
particularly as the number of the look up tables in color devices
increases due to the need for supporting multiple color spaces,
print media, and preferences. The trend toward finer sampling of
the spaces and larger bit depths also results in an increase in table
sizes, further exacerbating these memory concerns. Compression
of these CLUTs therefore becomes desirable for the purpose of
conserving memory. In this paper, we investigate methods for
CLUT compression, with the specific objective of improving
compression performance over what is achievable with generic
data compression methods.

Though firmware memory is the primary motivation for our
research in this paper, the same concerns of memory and storage
space are applicable for CLUTs that are embedded in color
documents (for e.g., ICC source profiles). In applications where
embedded profiles are utilized, the increased size due to the

embedded profiles represents an overhead, which CLUT
compression methods can help mitigate. As color workflows move
from the current default sRGB assumption, to more general color
spaces the use of embedded profiles is likely to increase. The
reduction in overhead due to improved CLUT compression is also
likely to offer a benefit in these applications.

Although there are no references for CLUT compression in
prior literature, compression methods have been extensively
studied for a number of applications (see for example [1]).
Compression methods can be categorized as lossless or lossy. The
former class of methods is used extensively for data compression,
where it is required that the recovered data from the compressed
representation must match the original data exactly, i.e., the
decompressed data must be mathematically equal to the original
data. Lossy compression methods on the other hand are commonly
used in applications where requirement of mathematical equality
between the compressed and decompressed forms of data can be
relaxed and distortions that are perceptually negligible (or small)
can be tolerated. Speech, audio, image, and video communication
are common examples of such applications. In this paper, we focus
our attention on lossless compression techniques for CLUTs1.

In Section 2 we provide a brief overview of lossless
compression methods which motivate the development of a
number of methods for CLUT compression that are presented in
Section 3. Experimental results presenting the performance of
these methods are presented in Section 4. Concluding remarks
form Section 5.

2. Lossless Data Compression
Techniques for lossless data compression lie in one of two

main categories: the first class of methods attempts to build an
(adaptive) dictionary of “patterns” observed in the data and
represents specific data values encountered as pointers to the
dictionary location in which the values can be found. The LZW
[3,4] compression method and its variants, including those used for
zip files[1], are common examples of this first class of methods.
These methods perform extremely well when the data contains
frequent and long repeats since the dictionary representation
becomes extremely efficient under these circumstances. A second
class of methods operates by modeling the probability distribution
of observed data values. In order to achieve compression,
frequently occurring symbol values are assigned shorter binary
representations and longer representations are used for infrequent
symbol values (while maintaining distinctness that allows

1 Fundamentally, this is not a restriction and one may consider
lossy methods for CLUT compression. These may be particularly
attractive for finely sampled and high bit depth tables.

15th Color Imaging Conference Final Program and Proceedings 261

reconstruction of the original values from these representations).
Huffman coding and arithmetic coding [1, 6] are representative of
this class of techniques.

3. Hierarchical CLUT Compression
Both classes of lossless compression methods described in the

preceding section operate on a sequential “stream” of input data. In
order to apply these methods to multi-dimensional constructs, such
as CLUTs, it is necessary to arrange the multi-dimensional data in
the form of a one-dimensional stream, a process that we will refer
to as serialization of the CLUT. In general serialization is
accomplished by defining the sequence in which the nodes of the
multi-dimensional LUT are traversed, producing the one-
dimensional stream. Typically, the order in which data is stored
(e.g. row-major/column-major) in computer memory constitutes
the natural sequence for obtaining the one dimensional data stream.
However, from the characteristics of the compression methods
outlined in the preceding section, it is apparent that improved
compression may often be obtained simply by rearranging the data.
This will be the case, if for instance, the re-ordering increases
repetition within the data. Though it is feasible to determine a data
adaptive re-ordering [5], it can be computationally demanding,
making it unsuitable for the target application. In addition,
adaptive ordering requires that the specification of the order in
which the data was rearranged also be stored in the compressed
representation so that this may be undone during decompression.
Instead, we propose a simpler alternative for data rearrangement
that utilizes the knowledge that the data represents a CLUT.

The data in a CLUT invariably represents a smooth and
continuous transform from the space of input variables to the space
of output variables. This is clearly the case for forward device
tables that represent the response of a physical device (in some
colorimetric space) as a function of the control values that define
the LUT indices. For inverse tables, that map device independent
colorimetric values to corresponding device control values,
smoothness and continuity are again necessary requirements in
order to ensure reasonable behavior in the presence of device drift.
Thus, for instance, a smooth black generation function is necessary
when computing the color correction table for a printer [12].

Space Filling Curves for Serialization
Since the data in the CLUT represents a continuous transform,

nodes of the CLUT that are close to each other, contain output
values that are also close to each other. This characteristic, while
clearly desirable from a compression perspective, is true only in
the multi-dimensional representation of the LUT and the one
dimensional serialization of the data into a sequence for the
purpose of compression does not necessarily preserve this trait.
Specifically, consider Fig. 1 where a 2-D LUT is used for
illustration. Fig. 1 (a) depicts the natural “raster-scan” order
corresponding to typical ordering of the LUT data in memory. A
serialization of the data in this order results in a jump from the end
of one line to the start of the next, since these LUT nodes are not
adjacent, this in all likelihood will cause a discontinuity in the
observed values that will likely reduce data repetition in the one-
dimensional stream and adversely impact compression
performance. Figure 2 (a) illustrates this point where a segment of
serialized CLUT data obtained through a traversal in this natural

“raster” order is shown, observe that the LUT output values show
several discontinuous jumps including a abrupt large jump at index
4914. In order to eliminate these discontinuities that are artificially
induced by the data serialization, we propose instead to obtain the
one-dimensional data through the traversal of the multi-
dimensional CLUT along a space filling curve [2, 7, 8, and 9] that
assures that the data is traversed in a manner that preserves
continuity in the input space of the multi-dimensional CLUT.
Figures 1 (b) and (c) illustrate the CScan and Hilbert [10] Space
filling curves as examples. Figure 2 (b) illustrates a segment of
CLUT data serialized according to the CScan order. Note that (as
may be expected from our preceding discussion) the resulting data
stream does not have any major discontinuities. In addition to
preservation of continuity, a desirably quality of space filling
curves is the preservation of contiguity, i.e., the multi-dimensional
data nodes that are close to each other should appear close to each
other in the serialized data. We can see that in this respect, the
Hilbert curve is preferable to the CScan.

a. Raster b. CScan c. Hilbert

Figure 1: 2-D Examples of Space Filling Curves

Hierarchical Differential Encoding
Differential encoding of data is a technique commonly

employed in data compression. For a one dimensional data
sequence, differential encoding operates by computing differences
among adjacent values, mathematically specified by the relation

Yn = Xn – Xn-1 and Y0 = X0 (1)

where Xn and Yn denote, respectively, the input and output of the
differential encoder at “time” n. When the input data is highly
correlated, the process of differential encoding reduces the
variance of the data. This therefore increases the propensity for
repetition of data values, thereby aiding lossless compression.

4875 4885 4895 4905 4915 4925
0

50

100

150

200

250

LUT coordinate

LU
T

 v
al

ue

Raster Scan

CScan

 Figure 2: Serialized Segment of CLUT Data for Raster and CScan orders.

Note discontinuity in raster order is not present in CScan order.

262 Copyright 2007 Society for Imaging Science and Technology

Noting that the CLUT is in fact multi-dimensional, we
propose a hierarchical extension of the conventional differential
encoding method wherein the differential encoding is performed at
multiple levels of the hierarchy corresponding to the dimensions of
the CLUT, viz, node, plane, cube, hyper-cube, etc. Furthermore,
the differential encoding may also be recursively performed at
different levels of the hierarchy. The resulting algorithm is
summarized in Matlab-style vectorized pseudo-code in Fig. 3. We
refer to this as recursive hierarchical differential encoding (RHD).
The alternative algorithm obtained without the recursion will be
referred to as non-recursive hierarchical differential (NRHD)
encoding which can be expressed similarly in algorithmic form.

The process of RHD may be interpreted as encoding the LUT
transformation in terms of its finite differences along the
coordinates corresponding to the input axes of the CLUT. For
typical CLUTs, values at adjacent nodes are highly correlated since
the CLUT represents a relatively fine sampling of a smooth
transformation between different color spaces. As a result, the
output from the differential encoding process has a significantly
lower variance than the input. This can be seen in Fig. 4, where the
histograms of the input and the output of RHD are shown,
respectively, in parts (a) and (b). Note the significant reduction in
variance in the RHD encoded data in comparison to the original
CLUT data.

diff =clut;
for i = q:-1:2 { diff(i, 1:q,1:q) -= diff(i-1, 1:q,1:q); }
for i=1:q {
 for j = q:-1:2
 { diff(i, j,1:q) -= diff(i, j-1,1:q); }
 for j=1:q {
 for k = q:-1:2
 { diff(i, j,k) -= diff(i, j,k-1); }
 }
}

a.

lut = construct;
for j = 1:q {
 for k = 1:q {
 for l = 2:q { lut(j,k,l) = lut(j,k,l) + lut(j,k,l-1); }
 }
 for k = 2:q { lut(j,k,1:q) = lut(j,k,1:q) + lut(j,k-1,1:q); }
 }
for j = 2:q { lut(j,1:q,1:q) = lut(j,1:q,1:q) + lut(j-1,1:q,1:q); }

b.

Figure 3: Recursive Hierarchical Differential (a) Encoding and (b) Decoding

algorithm for a qxqxq 3D CLUT.

Compression
Once CLUT data is pre-processed through the hierarchical

differential encoding and data reordering steps, it may be
compressed by a lossless compression method. For this purpose we
consider four different lossless compression methods:

(i) gzip [11]: A dictionary based compression method.
(ii) Adaptive Arithmetic Coding (AAC)[1, 6]: A probabilistic
modeling based technique.

-50 0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

#

LUT value
 a.

-60 -40 -20 0 20 40 60
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

#

LUT value

b.

Figure 4: Histogram of CLUT Data (a) before and (b) after NRHD coding

(iii) bzip2 [13]: A compressor that combines Burrows
Wheeler block sorting transform and Huffman Coding.
(iv) Lempel Ziv Markov Algorithm (LZMA)[14]: A recent
dictionary based compression method with a variable
compression dictionary size.
LZMA and bzip2 methods are recently developed methods

that offer better compression performance than gzip and AAC.
LZMA, in particular, is among the best performing lossless
compression methods available today.

4. Experimental Results
To assess the performance of the proposed method, it was

implemented in C++ and MATLAB. A collection of CLUTs
representative of a typical printer configuration was used to
perform the evaluation. All CLUTs had 8 bit values for each output
channel. The tables included:

a) 4 forward CMYK device tables (mapping to device
independent color space) each of size 174 x 3, totaling 1,002,252
bytes. These correspond to three standard CMYK tables (SWOP,
EURO, and DIC) and one device response table (obtained by two
different methods),

b) 4 forward RGB device tables, each of size 173 x 3, totaling
58,956 bytes, corresponding to different RGB input spaces, and

15th Color Imaging Conference Final Program and Proceedings 263

c) 8 pairs of inverse printer (correction) tables (mapping from
device independent color space to printer CMYK), each of size 173
x 4, for a total of 314,432 bytes. The 8 pairs correspond to the 8
different media choices for the printer (transparency, plain paper,
coated paper, etc) and two elements in each pair differed in their
black generation.

The evaluation of compression was performed using the
NRHD and RHD encoding methods along with one out of CScan,
Hilbert and Raster Scan options for the serialization of CLUT data.
Four compression methods – LZMA, bzip2, gzip, and adaptive
arithmetic coding (AAC) – were evaluated. In addition to the
proposed pre-processing based methods, direct compression of the
tables was also performed using each of these methods for the
purpose of benchmarking our performance improvement.

From the information on the sizes of the different tables
provided above, we see that the CMYK tables account for a major
part (72.86%) of the CLUT data. We therefore begin by comparing
the performance for different methods over these tables. We first
demonstrate the advantage of the proposed methods over direct
compression. Table 1, compares the performance of proposed
methods (NRHD + CScan + Compression) against direct
compression for the four CMYK tables. From the tabulated values
we can see that the proposed methods perform uniformly and
significantly better than direct compression. Furthermore, we see
that the performance across tables is rather similar and therefore
averaged values over the tables may be used to draw useful and
general conclusions.

Next we consider the performance across the different
variants of the proposed methods. Table 2 lists the average
compression ratios over the CMYK table data set for the different
possible methods consisting of one of NRHD/RHD for differential
encoding, Raster/CScan/Hilbert for data re-ordering, and
LZMA/bzip2 for compression. From a comparison of the numbers
in Tables 2(a) and 2(b), it is apparent that the NRHD + CScan +
LZMA method performs best with NRHD + Hilbert Scan + LZMA
as a fairly close second.

In Table 3 we compare the performance of the
aforementioned two methods against direct compression over the
complete data set of printer tables. Once again from the
compression ratios enumerated in Table 3, we see that the
proposed methods offer significant gains over direct compression.
The best performing method (NRHD + CScan + LZMA) offers a
compression ratio of approximately 3.2, which represents a
68.32% reduction in size over the uncompressed binary
representation and a 25.69% reduction in size in comparison with
direct compression.

Finally, in order to determine the impact of finer sampling on
compression performance, we also conducted the experiments
again using tables of size 334 and 333 respectively, instead of 174

and 173. The performance of the different methods relative to each
other follows the same trends as observed for the coarsely sampled
CLUTs. We therefore present only the summary results over the
ensemble of printer CLUTs for the better performing methods that
were included in Table 3. Table 4 lists the average compression
ratios over the complete ensemble of printer CLUTs for direct
compression with LZMA/bzip2 and for NRHD with Hilbert/CScan
reordering followed by LZMA. Comparing the tabulated
compression ratios against the corresponding values in Table 3, we

see that much higher compression ratios (better compression
performance) are obtained for the finer sampled versions of the
CLUTs. The average compression ratio for the best method
(NRHD + CScan + LZMA) over the complete data set in Table 4
was found to be 4.8457 as opposed to 3.1567 listed in Table 3.
This illustrates that with finer sampling, compression using the
proposed method offers greater gains, partly offsetting the increase
in table size.

The finer sampling used here is more representative of ICC
profiles than the coarse CLUTs considered for our results in Tables
1-3 (which were more representative of hardware CLUTs). Thus
the numbers in Table 4 illustrate that CLUT compression can
significantly reduce the memory and storage overhead caused by
profile embedding in documents. For our data set, the compressed
profile CLUTs takes only 20.64% of the space required by their
uncompressed versions.

5. Conclusion
Significant gains in Color Lookup Table (CLUT)

compression can be obtained through pre-processing of CLUT data
prior to compression. Utilizing the knowledge of CLUT structure
for hierarchical differential encoding and re-ordering the data using
a space filling curve can reduce storage requirements significantly.
For the best performing LZMA method the savings are
approximately 29% when compared with direct compression
(without preprocessing) and approximately 68% when compared to
uncompressed binary tables. The methods proposed here are
computationally simple and readily implemented in printer
firmware without an undue overhead in computation. With finer
sampled CLUTs the gains are even more significant.

Future work will investigate the extension of this algorithm to
higher bit depths, and the use of improved methods of prediction.

Acknowledgment
The authors would like to thank Dr. Marcelo J. Weinberger

and Dr. Erik Ordentlich of HP Labs, Palo Alto, California for
useful suggestions and discussions.

References
[1] Khalid Sayood, Introduction to Data Compression, Third Edition,

Morgan Kaufmann, San Francisco, CA, 2005, pp. 1-65

[2] Hans Sagan, Space Filling Curves, Springer-Verlag, 1994, pp. 1-29
[3] Welch T.A., “A technique for high performance data compression,”

Computer vol. 17, June 1984, pp. 8-19
[4] Jacob Ziv and Abraham Lempel, “Compression of Individual

Sequences via variable rate coding”, IEEE Transactions on Information

Theory, vol. 24, no. 5, September 1978, pp. 530-536
[5] Slobodan Vucetic, “A fast algorithm for Lossless Compression of Data

Tables by Reordering”, Proceedings of Data Compression Conference,
March 2006

[6] Guy E.Blelloch, “Introduction to Data Compression”, pp. 15-21
URL: www.cs.cmu.edu/afs/cs/project/pscico-
guyb/realworld/www/compression.pdf

[7] Sei-ichiro Kamata, Michiharu Nimmi, and Eigi Kawaguchi, “A Gray
Image Compression using Hilbert Scan”, Proceedings of ICPR, 1996,
pp. 905-909

264 Copyright 2007 Society for Imaging Science and Technology

[8] Zhexuan Song and Nick Roussopoulous, “Using Hilbert Curve in Image
Storing and Retrieving”, Informations Systems, vol. 27, no. 8, 2002, pp.
523-536

[9] Theodore Bially, “Space Filling Curves:Their generation and their
application to bandwidth reduction”, IEEE Transactions on Information

Theory, vol. 15, no. 6, Nov. 1969, pp. 658-664
[10] David Hilbert, “Ueber stetige Abbildung einer Linie auf ein

Flachenstuck”, Mathematische Annalen, vol. 38, 1891, pp. 459-460
[11] Jean-loup Gially, Gzip Users Manual,

www.gnu.org/software/gzip/manual/gzip.html
[12] Raja Bala, “Device Characterization”, Chapter 5 in Digital Color

Imaging Handbook, G. Sharma Ed., CRC Press, 2003, pp. 269-379
[13] URL: www.bzip.org/
[14] 7-zip Software Development Kit, URL: www.7-zip.org/sdk.html

Biography
Aravindh Balaji S.R. received his B.E. degree in Electrical and Electronics
Engineering from Anna University, Chennai, India in May 2006. Since
September 2006, he is pursuing his Master's degree in Electrical and
Computer Engineering from University of Rochester, Rochester. His
interests include image processing, color imaging, and data compression.
He is a student member of IEEE and IS&T.

Table 1: Compression ratios for direct compression and hierarchical differential (NRHD + CScan) compression across 4 forward
CMYK device tables. Each uncompressed table size is 174 x 3 = 250563 bytes

Compression method
(Direct) NRHD + CScan +

CLUT

gzip AAC bzip2 LZMA gzip AAC bzip2 LZMA
Device 1 1.7637 1.1203 2.1412 2.4655 2.6302 2.3968 2.8312 3.0657

DIC 1.8214 1.2121 2.1848 2.2511 2.5026 2.3895 2.6648 2.8933
EURO 1.9284 1.1740 2.2979 2.3021 2.7354 2.5254 2.9591 3.2286
SWOP 1.9155 1.2640 2.2814 2.4533 2.8639 2.2990 3.2487 3.4485

Table 2: Average compression ratios for Recursive Hierarchical Differential (RHD) and Hierarchical Differential (NRHD) Compression
methods. Averages are computed over 4 forward CMYK device tables, where the size of each table is 250563 bytes in uncompressed
format.

Preprocessing
RHD + NRHD +

Compressor

CScan Hilbert Raster CScan Hilbert Raster
gzip 2.3125 2.3012 2.3038 2.6830 2.6361 2.2903
AAC 2.6257 2.6330 2.6288 2.4027 2.4076 2.3456
bzip2 2.3835 2.3125 2.3669 2.9260 2.8485 2.3669
LZMA 2.5784 2.5751 2.5612 3.1458 3.0650 2.8272

Table 3: Compression ratios (total uncompressed bytes / total compressed bytes) observed over a representative data set of printer
CLUTs with 17 nodes along each input dimension of the CLUT. The total size of the uncompressed data for the full set of CLUTs is
1375640 bytes. The best method (NRHD + CScan + LZMA) results in a saving of 1.57 x105 bytes over direct compression (a 25.97%
reduction) for the full CLUT data set.

Data set
Input tables

Compression

 Methods CMYK RGB
Output
 tables

Full set
of tables

LZMA 2.3680 1.6543 2.4126 2.3370 Direct
Compression bzip2 2.3620 1.6866 1.9537 2.2095

NRHD + CScan + LZMA 3.1458 2.2398 3.4237 3.1567
NRHD + Hilbert + LZMA 3.0650 2.2154 3.0409 3.0109

15th Color Imaging Conference Final Program and Proceedings 265

Table 4: Compression ratios (total uncompressed bytes / total compressed bytes) observed over a representative data set of printer
CLUTs with 33 nodes along each input dimension of the CLUT. The total size of the uncompressed data for the full set of CLUTs is
16862264 bytes. The best method (NRHD + CScan + LZMA) results in a saving of 8.65 x105 bytes over direct compression (a 19.62%
reduction) for the full CLUT data set.

Data set
Input tables

Compression

 Methods CMYK RGB
Output
 tables

Full set
of tables

LZMA 3.9886 2.6464 3.2635 3.9233 Direct
Compression bzip2 3.8235 2.7399 3.2265 3.7703

NRHD + CScan + LZMA 4.9065 3.7745 4.1444 4.8457
NRHD + Hilbert + LZMA 4.7932 3.5082 3.9471 4.7249

266 Copyright 2007 Society for Imaging Science and Technology

