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Abstract 
As the number of primaries used in an imaging system increases, 

so does the cost of computing the resulting color gamut. While for 

three or even four primaries it is possible to use exhaustive 

techniques to generate a relatively small number of samples that 

provide sufficient gamut boundary information, taking the same 

approach with devices using a larger number of primaries (e.g. 

6+) leads to a combinatorial explosion. To address this issue while 

providing accurate information about the color gamut of a multi–

primary device, the present paper describes the PSS primary space 

sampling algorithm that reduces gamut computation time from 

centuries to seconds. 

Introduction 
Since William Kurtz’s first mechanically produced three–color 

engraving in 1893,
1
 the science and technology of color imaging 

has advanced dramatically on many fronts. Most importantly, form 

this paper’s point of view, the number of primaries (e.g. inks, 

toners, phosphors, filters, etc.) used in imaging systems including 

printers, displays and projectors has been increasing steadily from 

the initial sets of three used in color reproduction. 

In printing, ink–sets have increased from the initial cyan, magenta 

and yellow via the addition of a black to some current printers 

having as many as 12 inks. Displays and projectors too have seen 

the addition new primaries to complement the traditional red, green 

and blue and systems with up to six primaries are now available. 

While the benefits of using more primaries in an imaging system 

are clear, doing so also brings with it new challenges on a number 

of fronts. The most critical of them is how to make use of all the 

primaries so as to obtain the best result, whereby ‘best’ includes: 

having the largest color gamut, being least metameric and/or most 

color constant, providing the smoothest transitions and being most 

stable. Another challenge that using a greater number of primaries 

introduces is the question of how to compute their color gamut. In 

general gamut computation is based on sampling all possible 

combinations of varying amounts of the primaries used in a 

system, predicting the color appearances of these combinations and 

finally describing the volume in color space that these color 

appearances inhabit.  

Being able to determine the color gamut of a multi–primary system 

plays a key role first in being able to compare alternative sets of 

primaries in terms of their ability to address color space and 

second in then being able to determine how well a particular 

separation covers the color gamut possible with a given primary 

set. What is meant by color separation here, is the process where 

primary combinations are assigned to color space coordinates, 

which especially in the case of a multi–primary system involves 

making a choice among metameric combinations that address the 

same color space coordinates. 

To see what implications the use of an increased primary set has on 

gamut computation, the following section will describe what 

would happen if current approaches (used for three or four primary 

imaging systems) were applied to an eight or eleven primary 

system. Following this illustration of the problem, a novel primary 

space sampling technique will be presented that dramatically 

reduces gamut computation times. 

Exhaustive sampling 
If we take the case of a three primary imaging device and use k=2 

samples along each primary’s dimension (i.e. 0% and 100%) the 

result are the following s=8 samples: [0, 0, 0], [0, 0,1], [0, 1, 0], [0, 

1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]. Outputting them, 

measuring their colors and obtaining a gamut boundary from the 

result would not require much in terms of resources and would be 

quick. However, in practice more than two samples need to be 

used per primary dimension to get greater accuracy. 

Typically values of k=9 or 11 would be used, resulting in s=729 or 

1331 combinations, which could be measured in a matter of some 

minutes. In general s=k
n
 where n is the number of primaries, k is 

the number of samples per primary dimension and s is the total 

number of samples. 

While the above picture presents no challenges, adding more 

primaries to an imaging system soon results in an exponential 

explosion and the number of samples that need to be output and 

measured gets quickly out of hand. Taking, for example, a printer 

like the HP Designjet Z3100 that has 11 inks, would result in 

s=2048 samples for the coarsest sampling of k=2 and over 31 

billion samples for the more reasonable sampling of k=9. To print 

this latter sampling would require more than 31 million sheets of 

A4 and their measurement would take just under 12 centuries. 

To speed up the process, the first thing that is typically done is to 

use a mathematical model that, given a specific primary space 

vector predicts the color that would be obtained if it were printed, 

displayed or projected. The use of such models speeds things up 

dramatically and having k=9 samples for the above 11 primary 

system now takes ‘only’ five days to compute on a dual 2 GHz G5 

system as opposed to the 12 centuries it would take to print and 

measure the samples. However, even substituting modeling for 

printing and measurement still makes sampling primary 

combinations exhaustively take up an impractical amount of time 

(Fig. 1). 
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Fig. 1. Relationship of number of samples per primary dimension (k) and total 

number of samples (s) for exhaustively sampling an 8 primary system.  

A further complication that is added when more than the typical 

three or four primaries are used is that, with the addition of new 

primaries, it is no longer safe to assume that the system’s color 

gamut will be convex (or near–convex) in color appearance space. 

With the convexity assumption no longer valid, larger values of k 

are needed (e.g. 40 or more as opposed to around 10) to allow for a 

correct distinction between gamut surface concavities and 

sampling gaps. Taking even just k=25 for the 11 primary system 

mentioned above and computing all possible resulting 

combinations would again take close to 12 centuries to complete. 

What is therefore required is a new kind of sampling that gives the 

same result as the exhaustive technique while considering only a 

fraction of the possible combinations. 

Pair–Surface Sequential (PSS) Sampling  
With the aim of providing a significantly smaller number of total 

samples (s) the following two properties of gamut computation are 

identified and exploited:  

First, the anatomy of a device color gamut surface makes one of its 

parts have specifically different properties in terms of primary 

combinations, whereby the two parts – a lighter and a darker one –

join along the line of cusps (i.e. colors at each hue that have 

maximum chroma) (Fig. 2). In particular the part of a gamut 

surface, which contains the color obtained by setting all primaries 

to zero and consists of colors obtained by mixing at most two of 

the n primaries. For subtractive systems, it is a gamut surface’s 

lighter part where all colors are the result of mixing at most two 

primaries – adding a third primary to any two–primary 

combination only results in a color that has lower lightness and is 

therefore not on the lighter part of the gamut surface. Conversely 

for additive systems, it is a gamut surface’s darker part that has this 

at–most–two–primaries property as adding a third primary results 

in a lighter color that is no longer on the darker part of the gamut 

surface. 

Second, the gamut boundary is a three–dimensional surface. Since 

the boundary is three dimensional in color appearance terms it can 

also be represented by a 3D subspace of the n dimensional primary 

space (i.e. a 3D subspace of nD exists in which the gamut can be 

represented and will biject onto the gamut in color appearance 

space). The consequence of this is that parts of the nD space can be 

discarded by looking at what they map to in color appearance 

without having to sample the primary space exhaustively. 

Algorithm details and pseudo–code 
By exploiting the above insights, a sampling technique has been 

developed that consists of two stages: 

Stage 1: color gamut of primary combinations where only up to 

two primaries have non–zero values. This involves generating 

k
2
*n*(n–1)/2 samples (i.e. exhaustively sample all the 2D faces of 

the nD hypercube that have the origin as one of the vertices) and 

computing their color appearance gamut (via predicting color 

appearance for each primary vector). A key here is that not only 

color appearance coordinates are stored for gamut boundary colors 

but also corresponding primary combinations. The result of this 

first stage is a set of nD vectors that are candidates for being on the 

gamut boundary of the primary set in color appearance space and 

where each vector has at most two non–zero values. 

(a) (b)  

Fig. 2. . Lighter and darker part of a color gamut: (a) projections of color gamut along L* axis and a* and b* half–axes, (b) colorized projections: blue – lighter 

gamut part, red – darker gamut part, white – line of cusps. 
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In pseudo–code this stage is as follows: 

create empty sample set 

for i from 1 to (n-1) 

 for j from i+1 to n 

  set all primaries to 0 

  for l from 0 to 1 in k steps 

   for m from 0 to 1 in k steps 

    set primary i to l 

    set primary j to m 

    compute color of primary combination 

    add color and primary values to sample set 

   end for 

  end for 

  set primaries i and j back to zero 

 end for 

end for 

compute gamut boundary of sample set 

Here the computation of the color of a primary combination 

involves using a characterization model to predict the stimulus 

corresponding to a combination of primary amounts followed by 

color appearance prediction from stimulus colorimetry and 

viewing condition parameters. 

Stage 2: Sequentially extruding gamut boundary primary vectors 

along each dimension in turn. The second stage then is a sequential 

taking into account of the effect of the system’s primaries. For the 

first primary this is done by taking the primary combinations that 

resulted in the gamut boundary at the end of the first stage and 

varying the first primary’s value while keeping the other primaries’ 

values unchanged. The result is an intermediate approximation of 

the gamut where the gamut boundary candidate ink vectors now 

have up to three non–zero values. Next the same is done for the 

second and all subsequent primaries, whereby it is always the 

outcome of having varied the previous primary that is further 

refined.  

In pseudo–code this stage is as follows: 

set current gamut boundary to gamut boundary from stage 1 

for i from 1 to n 

 set previous gamut boundary to current gamut boundary 

 empty current gamut boundary 

 create empty sample set 

 for all vertices of previous gamut boundary 

  for m from 0 to 1 in k steps 

   set vertex primary i to m 

   compute color of primary combination 

   add color and primary values to sample set 

  end for 

 end for 

 compute current gamut boundary as gamut of sample set 

end for 

return current gamut boundary 

Extruding primary vectors 
One of the key concepts here (in addition to the realization that 

device/medium gamuts have two distinct parts joined along the 

line of cusps) is the idea of taking a set of primary vectors and 

extruding them along the primary space’s dimensions one at a time 

(i.e. stage 2 of PSS). To illustrate this idea, let us consider a set of 

vectors in 4D that have at most two non-zero values – i.e., like the 

kind of primary vectors from stage 1 of PSS. What extruding them 

means, e.g., along the first dimension, is to take the value of each 

vector in that dimension and vary it across the whole valid range. 

In Fig. 3 the left side shows three sets of vectors with at most two 

non-zero values – each set having zeros in at least the two 

dimensions indicated (i.e. always in the first and then on one each 

of the remaining three). The right side of Fig. 3 then shows lines 

along which the extruded versions of these vectors lie in 4D. Note 

that these extruded versions of the initial vectors have at most three 

non-zero values (i.e. the at most two non–zero values they started 

with plus the non-zero value in the first dimension). This process 

of extrusion can then proceed along any of the dimensions – 

always varying the values in only one member of a set of vectors. 

 

Fig. 3. 4D vectors with at most two non-zero members in three of the four 

dimension (left) and their extrusion along the first dimension in which they all 

had a zero value initially. 

Requirements 

 

Fig. 4. Relationship of number of samples per primary dimension (k) and total 

number of samples (s) for an 8 primary system. In the plot cyan diamonds 

represent exhaustive sampling, and red squares and green triangles show 

PSS sampling using 256 and 10000 gamut boundary samples (g) 

respectively. 

A key requirement of this PSS approach is also the use of a gamut 

boundary descriptor that allows for the description of concavities 
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(e.g. modified convex hull,
2
 alpha shapes,

3
 segment maxima,

4 

spline surface
5
). The total number of samples used by PSS for 

describing a multi–primary gamut is k
2
*n*(n–1)/2 + n*g*k where 

g is the number of vertices used for describing a gamut boundary 

(for techniques that use a fixed number of gamut boundary 

vertices). This is a dramatically smaller number than the k
n
 of 

exhaustive sampling (Fig. 4) and even for k=60 PSS sampling 

takes only three seconds to compute. 

Given that the above computation relies on a mathematical model 

of the color imaging device, which is likely to have some 

differences from actual output, the result of the PSS sampling can 

also be used to obtain direct measurements of the device’s gamut 

using a small number of color patches. As the computation results 

in a small number of gamut boundary points (e.g. 200–300 are 

typically sufficient) and as the primary combinations that resulted 

in them are known, these primary combinations can simply be 

output and measured. The result then is measured gamut boundary 

information based on PSS sampling. 

Evaluating PSS sampling 
The two key aspects of PSS that need to be tested are: first, 

dependency of result on order in which primaries are considered in 

the sequential part of the algorithm and second, overall accuracy as 

compared with exhaustive sampling. 

In both these cases CIECAM02
6
 was used as the color appearance 

space and the single constant Kubelka–Munk model
7
 was used to 

predict printed reflectance from primary vectors and predictions 

for an 8–ink inkjet system on a glossy substrate. The gamut 

boundary computation was performed using the segment maxima 

technique
4
 using 256 gamut boundary samples. All differences are 

in CIECAM02 Jab space, where a and b are orthogonal 

equivalents of chroma (C) and hue (h). 

Effect of primary order 
To test the effect of the order in which primaries are considered by 

the PSS technique, the gamut boundary was computed for all 

permutations of the 8 inks (i.e. 8! = 40320). The volumes of these 

more than 40 000 gamuts were compared with their mean and it 

was found that the range of differences was from –0.65% to 

+0.51%. In other words, on average the effect of primary order on 

gamut volume is only about ±0.5%. I.e. for a gamut with a volume 

of 600 000 cubic CIECAM02 Jab units this corresponds to ±3000. 

The effect of primary order can therefore be considered as 

negligible and can be ignored. 

PSS accuracy 
The key requirement for PSS is to provide samples that result in a 

gamut boundary that is very similar to the one obtained by using 

exhaustive sampling of all primary value combinations. To test this 

property the difference between an exhaustively computed (Ge) 

and a PSS (Gpss) gamut boundary will be computed by taking all 

the gamut boundary vertices of Ge and computing the minimum 

color difference between them and the Gpss boundary if they are 

outside it. Difference will be se to zero when the Ge vertex is 

inside the Gpss boundary. The same will be done for Gpss points 

relative to Ge – only these color differences will be made negative 

as they represent cases where the PSS gamut exceeds the 

exhaustive gamut and in which case they are not errors of the PSS 

sampling but of the exhaustive technique. 

 

Fig. 5. Differences of Ge–Gpss for exhaustive k=16 or 20 and PSS k=60. 

Fig. 5 shows the distribution of differences computed in the above 

way. First it can be seen that the range of differences is [–3,2] 

EJab (i.e. Euclidean distance in CIECAM02 Jab space) whereby 

in the vast majority of cases (80%) PSS is more accurate than or 

equal to the exhaustive computation and only in 2% of cases does 

the PSS boundary under–predict the exhaustive boundary my more 

than 1 EJab. 

Also useful is to see how the exhaustive and PSS techniques 

compare when the number of samples per channel is the same for 

both and Fig. 6 shows this when k=20. As can be seen the accuracy 

of the PSS technique is virtually the same when k=20 as when 

k=60 and this is the case due to the sampling approach PSS takes 

(i.e. where it ends up having more samples on the actual gamut 

boundary and therefore results in less risk of false concavities). 

 

Fig. 6. Differences of Ge–Gpss for k=20. 

It can be seen that in this case PSS gives a very accurate prediction 

of the printing systems’ color gamut in a way virtually invariant of 

sampling sequence order and even for 60 samples per channel it 

completes the computation in 1/8000000
th

 of the exhaustive 

computation’s time while the exhaustive computation only uses 20 

samples per channel and in many cases under–predicts the gamut. 
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Conclusions 
The pair–surface sequential (PSS) sampling technique introduced 

here has been shown to provide accurate predictions of n–primary 

output imaging systems in a matter of seconds, as compared to the 

days or even years it would take an exhaustive computation to give 

an equivalent result. 

The advantages of PSS are that it allows for accurate, non–convex, 

on–the–fly, n–primary gamut computation at high speed and its 

results can be used both in the development of multi–color 

separation and for the visualization of color gamuts possible with 

arbitrary sets of additive or subtractive primaries. 
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