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Abstract
Color correction describes the transformation process be-

tween device RGB values and CIEXYZ or CIELAB values. This
mapping is in general not unique, because the spectral sensitivi-
ties of most of the devices do not satisfy the Luther condition and
the acquisition and viewing light sources have a different power
spectrum. Therefore, there exists a set of colors with different re-
flectance spectra which result in the same device RGB response
(device metamerism), but leads to different tristimuli for an ob-
server under the viewing light source. To determine an optimal
mapping between a given device RGB and a CIELAB color, the
distribution of metamers in a metamer mismatch gamut has to be
characterized in the viewing CIELAB space. We present a novel
method by estimating the distribution of metamers within the mis-
match gamut using a Monte Carlo method. The main idea is the
construction of a basic collection of metameric blacks (used by
the Monte Carlo method) that is calculated by using a represen-
tative set of reflectance spectra and performing principle compo-
nent analysis (PCA) within the black space of the device. The
transformation of the sum of a fundamental metamer for the sen-
sor response and the basic collection in the CIELAB color space
leads to a point cloud with a centroid approximating the center
of gravity of the mismatch gamut. This point is the optimal color
correction in the sense of the smallest mean error.

Introduction
Color correction describes the transformation process be-

tween device RGB values and an device independent color space
of an observer (e.g. CIEXYZ, CIELAB). In each metamer color
reproduction system this is the first color transformation after
image acquisition. The mapping is in general not unique, because
the spectral sensitivities of most of the devices do not satisfy the
Luther-Ives condition [1][2] and the acquisition and viewing light
sources have a different power spectrum. Therefore, there exists
a set of colors with different reflectance spectra which result in
the same device RGB response (device metamerism), but have
different color appearances for an observer under the viewing
light source (metamer mismatch gamut). For this reason color
correction is a classical one-to-many transformation problem.

In recent years various color correction methods have been
proposed. Besides common target based methods like linear
transformation into the CIEXYZ color space using a simple 3x3
matrix or multi-order polynomial regression into the CIEXYZ
color space, Hardeberg [3] and Koenig [4] proposed multi-order
polynomial regression into the CIELAB color space after

initially performing different transformation steps to consider
the nonlinear relationship of human color vision to the intensity
of the RGB values. They achieved a distinct improvement of
error rates. Vrhel et al. [5] used neural networks, Koenig [4]
proposed a matrix method that was robust to noise; Hung [6] used
LUT-interpolation and extrapolation; and Finlayson [7] proposed
a constrained least square-regression to preserve the white point.
This list of target based methods is not exhaustive.

Other methods use the model of a linear image acquisition
system for color correction. Finlayson, et al. [8] characterized the
metamer mismatch gamut by an enclosing cube in the CIEXYZ
color space using linear programming and chose the center of
gravity of this cube for color correction. The results outperform
the standard target based methods. Urban, et al. [9] used also a
linear programming technique to calculate a metamer boundary
descriptor matrix that characterizes the metamer mismatch gamut
within the CIELAB color space. The center of gravity of the
matrix entries had been chosen for color correction. Other
approaches used the linear image acquisition model to calculate a
matrix based transformation function [10][11][12].

The aim of this paper is to determine an optimal mapping
between a given device RGB value and a device independent
color in the sense of the minimal mean color difference. Our
approach is to estimate the density distribution of metamers
inside the metamer mismatch gamut (see [13][14][15]) within an
observer’s perceptual color space (i.e. the device independent
color space) using a Monte Carlo method and choose the center
of gravity of the metamers considering this density distribution
for color correction. The main idea is the construction of a basic
collection of device metameric blacks which is calculated by
using a representative set of reflectance spectra and a PCA within
the black space of the device. For a RGB sensor response we
calculate a fundamental metameric spectrum and add the spectra
of the basic collection according to the well-known metameric
black method. Each of the resulting spectra leads by construction
to the given RGB value. Transforming the whole set into the
perceptual color space of the observer yields to a point cloud
which density distribution is assumed as a good approximation
of the density distribution of metamers within the metamer
mismatch gamut.

This method improves the performance of target and re-
gression based methods especially in the area of saturated
colors.
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The Metamer Mismatch Gamut
The following text is a short introduction to metamer

mismatch gamuts. A detailed description can be found in
[10][11][12].

If all spectra are sampled at N equi-spaced wavelength a
linear acquisition system can be described algebraically as

c = SLar+ = Ωar + ε (1)

where c = (R,G,B) is the sensor response, S is a 3×N matrix
which contains the channel sensitivities as row vectors, La

is a N × N diagonal matrix with the radiant spectrum of the
acquisition illuminant along the diagonal, r is a N × 1 vector of
the reflectance sample and is additive noise. The matrix product
of the sensor response matrix S and the illuminant matrix La is
the acquisition lighting matrix Ωa.

By means of the lightning matrix Ωa the device black space is
defined as follows

Kernel(Ωa) := {r | Ωar = 0} (2)

The device black space contains all spectra which sensor re-
sponses are zero, i.e. black. The set of all device metameric spec-
tra which lead to the sensor response c can be derived as follows

Rc = {r | r = fc +Kernel(Ωa)} ∩ Rall (3)

where fc is the so called fundamental metameric spectrum of the
sensor response c and Rall is the space of all natural reflectance
spectra. Each reflectance spectrum with sensor response c can
be used for fc. To calculate such a spectrum from the sensor
response c, various methods can be used, e.g. pseudoinverse,
Wienerinverse or principle eigenvector method. The intersection
with Rall is to ensure physically useful spectra which are positive,
bounded and smooth.

In an analogous manner to the sensor response the observer’s
tristimulus value o ∈ CIEXYZ can be described

o = MLvr = Ωvr (4)

where o = (X ,Y,Z) is the CIEXYZ tristimulus, M is a 3×N ma-
trix which contains the CIE x̄, ȳ, z̄ color matching function as row
vectors, Lv is a N ×N diagonal matrix with the radiant spectrum
of the viewing illuminant along the diagonal, r is a N × 1 vector
of the reflectance sample and Ωv is the observer lighting matrix.
Due to the common difference of acquisition and viewing illumi-
nant and the non-compliance of the Luther-Ives condition, device
metameric spectra lead to different tristimuli. The space of all
tristimuli resulting from device metameric spectra for the sensor
response c is called metamer mismatch gamut

Mc = ΩvRc (5)

Each tristimulus within Mc could be the tristimulus that occur
for an observer if he is looking on the acquired sample with
reflectance spectrum r under the viewing illuminant Lv.

Unfortunately, only one tristimulus is the correct one and it
is impossible to determine the real tristimulus given only the

sensor response c. Since the density of metamers within the
metamer mismatch gamut is not equally distributed [14], we can
increase the chance to select the right tristimulus by choosing
the one with the largest density. More related to practice is a
selection that minimizes the mean color difference to all other
colors within the metamer mismatch space considering the
density of the metamers. In this context an inspection of metamer
mismatch gamuts in perceptual color spaces e.g. CIELAB where
the perceived color difference is defined as the Euclidean metric
has considerable advantages.

The density distribution of metamers chages their skewness
and kurtosis due to the non-linear relationship of the color space
transformations.

The following method uses a Monte Carlo calculation to
determine the density distribution of metamers within the
metamer mismatch gamut. Basis of this Monte Carlo
calculation is a representative set of reflectances. In our
simulation we use 1269 spectra of Munsell color chips, avail-
able on the website of the University of Joensuu, Finland
(http://spectral.joensuu.fi). If the set of acquired spectra
is known, e.g. an output of a calibrated printer, than these spectra
can be used instead of the Munsell set, to improve the results.

The Color Correction Method
The proposed method can be subdivided into three parts:

1. Constructing of the basic collection of device metameric
blacks (once)

2. Calculation of the fundamental metamer (for each sensor re-
sponse)

3. Monte Carlo calculation (for each sensor response)

In the following text we denote the representative set of re-
flectance spectra by r1, . . . ,rn. Furthermore we use principle com-
ponent analysis [16][17] of different datasets to calculate their
representative spectra. For the spectra x1, . . . ,xm ∈ R

N the func-
tion PCA returns a real valued, unitary N×N matrix X containing
as columns vectors the characteristic spectra of the set ordered ac-
cording to the size of their singular values

X = PCA(x1, . . . ,xm) (6)

Constructing a Basic Collection of Device Metameric
Blacks (once)

The basic collection of device metameric blacks is a set of
representative spectra that are within Kernel(Ωa). We calculate
these spectra using a representative set of reflectance spectra in
three processing steps:

1. In the first step we calculate the characteristic spectra of
the representative set of reflectance spectra

U = PCA(r1, . . . ,rn) (7)

2. In the second step we calculate a basis of the black space
Kernel(Ωa) which adopts the information of the representative
set of reflectance spectra inside the black space. For this purpose
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Figure 1. Orthonormal basis spectra of the black space for a Leica camera

with acquisition illuminant CIE D50. Here: 3 column vectors of matrix V.

we calculate at first an arbitrary basis of Kernel(Ωa) by using e.g.
the singular value decomposition of ΩT

a

ΩT
a = V DW T (8)

The column vectors v4, . . . ,vN of V which corresponds to singular
values equal zero are a orthonormal basis of Kernel(Ωa) (see Fig-
ure 1). To calculate a basis which contains the basic information
of the representative set of reflectance spectra within the first ba-
sis elements, we add the first three column vectors ui1 ,ui2 ,ui3 of
U to v4, . . . ,vN , which are linearly independent to v4, . . . ,vN . Ac-
cording to the theorem of basis completion the resulting N vectors
ui1 ,ui2 ,ui3 ,v4, . . . ,vN are a basis of R

N , and the matrix

B = (ui1 ,ui2 ,ui3 ,v4, . . . ,vN) (9)

is invertible. Than we calculate the coefficients for all reflectance
spectra of the representative spectral set respective the basis
ui1 ,ui2 ,ui3 ,v4, . . . ,vN :

Q = B−1R (10)

where R = (r1, . . . ,rn). The column vectors of Q = (q1, . . . ,qn)
are the desired coefficients. We can decompose each reflectance
spectrum ri of the representative set into a vector rp

i which is a
linear combination of the three characteristic spectra of the rep-
resentative set ui1 ,ui2 ,ui3 and a vector rΩa

i which lies inside the
black space of the device

ri = Bqi =
3

∑
j=1

qi
jui j +

N

∑
j=4

qi
jv j = rp

i + rΩa
i (11)

To calculate the characteristic spectra of the representative set of
reflectance spectra inside the black space of the device we have to
perform a PCA of the set rΩa

1 , . . . ,rΩa
n :

UΩa = PCA(rΩa
1 , . . . ,rΩa

n ) (12)

The first k (k < N −2) column vectors uΩa
1 , . . . ,uΩa

k of the matrix
UΩa are the first k most significant characteristic spectra of the
representative set of reflectance spectra within the black space of
the device (see Figure 2).

3. Using this preliminary work we can define the basic

Figure 2. Orthonormal basis spectra of the black space for a Leica camera

with acquisition illuminant CIE D50. Here: The first 3 characteristic spectra

uΩa
1 , . . . ,uΩa

3 calculated for 1269 Munsell color chips as representative spec-

tral set inside the device’s black space.

collection by means of a decomposition of each reflectance
spectrum in the representative spectral set

ri =
3

∑
j=1

qi
jui j +

N−3

∑
j=1

gi
ju

Ωa
j (13)

The basic collection rΩa
1 , . . . ,rΩa

n is defined by the first k terms of
the second sum, i.e.

r̂i =
k

∑
j=1

gi
ju

Ωa
j (14)

The spectra rΩa
i of the basic collection are smooth, they are inside

the black space of the device and contain the principle black space
information of the representative set.

Calculation of the fundamental metamer (for each sensor
response)

Given the sensor response c = (R,G,B) the fundamental
metamer can be calculated as follows

fc = A(ΩaA)−1c (15)

where A = (ui1 ,ui2 ,ui3 ) is the matrix containing the first three
characteristic spectra which are linear independent to the black
space.

The Monte Carlo Method (for each sensor response)
For the Monte Carlo calculation we consider only bounded

(r ≤ 1) and positive (r ≥ 0) spectra and add the fundamental
metamer fc to ensure that the set is not empty. The resulting set
has nc (nc ≤ n+1) elements (see Figure 4)

Sc = { fc + r̂i | 0 ≤ fc + r̂i ≤ 1, i = 1, . . . ,n}∪{ fc} (16)

After transforming the spectra of Sc to the CIELAB color space
for the viewing illuminant we take the mean value of the resulting
point cloud for color correction:

1
nc

∑
r∈Sc

L (Ωvr) (17)

where L is the color space transformation from CIEXYZ to
CIELAB.
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Figure 3. A Munsell spectrum

Figure 4. Spectral set Sc. Using the Leica Camera (see Figure 9) under

the acquisition illuminant CIE D50 these spectra result in the same sensor

response as the spectrum in Figure 3.

Experimental Results
We have tested our method by means of simulation exper-

iments using a Leica camera with sensitivities shown in Figure
9, left. The sensitivities have been measured using a calibrated
monochromator. Each of the combinations of the illuminants CIE
A, CIE C, CIE F11 is used as acquisition and viewing illumi-
nants. As mentioned before, we use the 1269 Munsell color chips
as our representative set of reflectance spectra and four charac-
teristic spectra of the black space (i.e. k = 4). We compare our
method with a simple least square regression matrix method that
use as virtual target the same Munsell spectral reflectance set. As
test spectra we use the reflectance spectra of the Vrhel database
[18]. The results are shown in Figure 6, 7 and 8.

Discussion and Conclusion
The results demonstrate the effectiveness of this novel ap-

proach, particularly since the verification data, the Vrhel set, have
spectra quite dissimilar to the calibration data, the Munsell Book
of Color. The density estimated color correction achieves dis-
tinctive smaller ∆E∗

ab errors compared with the target based lin-
ear least square method. The behavior of the standard deviation
of ∆E∗

ab errors is similar. The magnitude of error strongly de-
pends on the special combination of acquisition and viewing illu-
minant. Though both methods have a completely different struc-
ture, their relative behavior considering acquisition and viewing

Figure 5. Point cloud resulting from the Monte Carlo calculation within the

mismatch gamut (determined by the MBD method [9]). The points were cal-

culated from the response of the Leica camera resulting from the reflectance

spectrum in Figure 3 for the acquisition illuminant CIE D50 and viewing il-

luminant CIE F11. The projected density function below shows a distinct

maximum as well as in all of the investigated cases.

Figure 6. Mean ∆E∗
ab errors for all reflectance spectra of the Vrhel database.

illuminant is very similar: For acquisition illuminant A and view-
ing illuminant D50 or F11 the error rates are high. For acqui-
sition illuminant F11 and viewing illuminant the error rates for
both methods are very small. The reason of these similarities is
the size of the metamer mismatch gamut which is on average con-
spicuous smaller for F11-A combination compared to A-D50 or
A-F11. The density estimated color correction outperforms the
regression based for each combination of acquisition and viewing
illuminants. For illuminant combinations result in small metamer
mismatch gamuts the error differences are small but for large
metamer mismatch gamuts the error rates of the density estimated
color correction are noticeable smaller.
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