Spectral encoding / decoding using LabRGB

Fumio Nakaya and Noboru Ohta, Fuji Xerox Co., Ltd., Kanagawa, Japan

Abstract

Spectral encoding / decoding methods using unique eigenvectors and physically meaningful values were explored. Three new methods such as, $\operatorname{TrW} 6$ consisting of 6 unique trigonometric functions, Lab2 consisting of two CIELAB, LabRGB consisting of CIELAB and RGB, were derived and compared against the traditional eigenvectors method. It was found that TrW 6 and LabRGB showed almost the same accuracy as the traditional eigenvectors method. By using LabRGB, color characteristics can be estimated by only looking at its encoding signals and we do not have to exchange eigenvectors beforehand for exchanging a different population of object colors. LabRGB can be applied not only to spectral imaging but also to traditional tri-chromatic imaging world, so its usage is unlimited.

Introduction

Spectral encoding / decoding using eigenvectors is a wellknown method since a long time ago. For example, spectral distribution can be written as a linear combination of 6 eigenvectors, such as;

$$
\begin{equation*}
\rho(\lambda)=\sum_{i=1}^{6} w_{i} \cdot e_{i}(\lambda) \tag{1}
\end{equation*}
$$

where, λ is wavelength, $\rho(\lambda)$ is spectral reflectance of an object color, $e_{i}(\lambda)$ is i-th eigenvector and, w_{i} is a weighting factor of the i-th eigenvector.

In the present study, 6 eigenvectors from $e_{1}(\lambda)$ through $e_{6}(\lambda)$ were obtained first by principal component analysis applied to a population of object colors as bellow.
a) Generating 1000 object colors using the pseudo-object color condition [1].
b) Calculating eigenvectors by principal component analysis.
c) Verifying estimation error.

An example of eigenvectors is shown in Fig. 1.
The pseudo-object color condition is a convenient method to generate spectral reflectance of pseudo-object colors with an assumption of less than 3% variations from the average reflectance of neighboring samples on an object's reflectance spectrum for 10 nm step data.

First, spectral reflectance estimation was made on an object color by multiple regression analysis using Eq. 1 with known eigenvectors and unknown weighting factors (called W6).

Figure 2 shows spectral reflectance estimation for one color from the Macbeth color chart and Fig. 3 shows the standard deviation of reflectance estimation as a function of wavelength for 1000 pseudo-objects colors.

An encoding / decoding method above using eigenvectors has the least estimation error. On the other hand, eigenvectors cannot be defined uniquely, because they depend on a sample selection of population.

Also, signals of encoding / decoding method using eigenvectors have no physical meaning. So it is difficult to directly estimate either a shape of spectral reflectance, or color characteristics of an original object color. It is therefore not easy to verify an encoding / decoding process. Furthermore, it cannot be applied to current tri-chromatic imaging systems directly.

As such, several challenges have been made on an encoding / decoding method described above. A recently reported one is LabPQR [2]. LabPQR is a concept of the encoding which has three dimensions (CIELAB [3]) to represent the colorimetric characteristics of a color under a specific illuminant and additional dimensions ($P Q R$) to describe the metameric black spectrum of a spectral power distribution [4]. The intention of $L a b P Q R$ is to convey physical values so that an encoding signal can be used to estimate an original object color. Several variations of the $P Q R$ aspects of $L a b P Q R$ have been described in the literature [2], [5] including those based on a population of samples or those based on fundamental spectral stimuli [4]. Although the LabPQR concept has well introduced, an applicable algorithm is not available yet.

The present paper investigates and deliver an actual algorithm of the LabPQR concept to the real world and describes encoding / decoding methods which have unique, well-defined eigenvectors, physically meaningful encoding values, and are cable of handling both spectral imaging and current tri-chromatic imaging equipments.

Figure 3. Standard deviation of spectral reflectance estimation using W6

Eigenvectors using trigonometric function

There are several physically meaningful values such as $R G B$ and $L^{*} a^{*} b^{*}$. Along them, we here use the $R G B$ values. An eigenvector set can be chosen as shown in Eq. 2. The first three eigenvectors are roughly designed to represent $R G B$ spectral distribution curve and the last three eigenvectors cover higher frequency.

$$
\begin{align*}
& e_{1}(\lambda)=\sin \left(\frac{1}{2} \pi \frac{\lambda-\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}\right) \\
& e_{2}(\lambda)=\cos \left(\frac{1}{2} \pi \frac{\lambda-\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}\right) \\
& e_{3}(\lambda)=\sin \left(\pi \frac{\lambda-\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}\right) \\
& e_{4}(\lambda)=\cos \left(\frac{3}{2} \pi \frac{\lambda-\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}\right) \\
& e_{5}(\lambda)=\sin \left(2 \pi \frac{\lambda-\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}\right) \\
& e_{6}(\lambda)=\cos \left(\frac{5}{2} \pi \frac{\lambda}{\lambda_{\max }-\lambda_{\min }}\right)
\end{align*}>
$$

With this eigenvector set, color characteristics can be estimated by weighting factors of the first three eigenvectors. The shape of the trigonometric eigenvectors is shown in Fig. 4. Spectral reflectance estimation was made using an equation obtained by substituting Eq. 2 into Eq. 1 (called $\operatorname{Tr} W 6$). Figure 5 shows a spectral reflectance estimation for one color from the Macbeth color chart and Fig. 6 shows the standard deviation of spectral reflectance estimation as a function of wavelength for 1000 pseudo-object colors. Overall Standard deviation of 1000 pseudo-object colors were 0.0335 in $W 6$ and 0.0365 in $\operatorname{Tr} W 6$, and a difference between those were only 0.3%, so that an almost equivalent accuracy can be obtained.

Figure 6. Standard deviation of spectral reflectance estimation using TrW6

In Eq. 2, frequency multiplier of the trigonometric function of $e_{4}(\lambda) \sim e_{6}(\lambda)$ were selected from all combination of up to 4 by a $1 / 2$ step. There were some other combination of the frequency multiplier, which gives a standard deviation of spectral reflectance estimation better than $\operatorname{Tr} W 6$ and surprisingly even better than $W 6$ as well. The present selection was made by its simplicity, a balance along the wavelength and a reasonable accuracy.

Lab2

The next two encoding /decoding methods are to use two sets of CIELAB [3] values (called Lab2) and a combination of CIELAB and RGB (called LabRGB). Lab2 is to use two different sets of CIELAB values corresponding to two illuminants such as $D 65$ and A for encoding signals. Spectral reflectance estimation was made then by using CIEXYZ [3] values $X_{D 65}$, $Y_{D 65}, Z_{D 65}, X_{A}, Y_{A}, Z_{A}$.

Equation-3 contains 6 simultaneous equations with six unknown weighting factors $w_{1} \sim w_{6}$. In Eq. $3, E_{65}(\lambda), E_{A}(\lambda)$ are the spectral energy distributions of illuminant $D 65$ and A, and $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ are the color matching functions.

$$
\begin{align*}
& X_{D 65}=\sum_{i=1}^{6} w_{i} \int e_{i}(\lambda) \cdot E_{65}(\lambda) \cdot \bar{x}(\lambda) d \lambda \\
& Y_{D 65}=\sum_{i=1}^{6} w_{i} \int e_{i}(\lambda) \cdot E_{65}(\lambda) \cdot \bar{y}(\lambda) d \lambda \\
& Z_{D 65}=\sum_{i=1}^{6} w_{i} \int e_{i}(\lambda) \cdot E_{65}(\lambda) \cdot \bar{z}(\lambda) d \lambda \tag{3}\\
& X_{A}=\sum_{i=1}^{6} w_{i} \int e_{i}(\lambda) \cdot E_{A}(\lambda) \cdot \bar{x}(\lambda) d \lambda \\
& Y_{A}=\sum_{i=1}^{6} w_{i} \int e_{i}(\lambda) \cdot E_{A}(\lambda) \cdot \bar{y}(\lambda) d \lambda \\
& Z_{A}=\sum_{i=1}^{6} w_{i} \int e_{i}(\lambda) \cdot E_{A}(\lambda) \cdot \bar{z}(\lambda) d \lambda
\end{align*}
$$

By solving Eq. 3 for $w_{1} \sim w_{6}$, the original object color can be readily obtained. With this method, the decoding was done, and Fig. 7 shows a spectral reflectance estimation for one color from the Macbeth color chart and Fig. 8 shows the standard deviation of spectral reflectance estimation as a function of wavelength for 1000 pseudo-object colors.
$X_{D 65}, Y_{D 65}, Z_{D 65}, X_{A}, Y_{A}, Z_{A}$ in Lab2 have a physical meaning, so that feature of an object color can be estimated without decoding into spectral reflectance curve. On the other hand, the standard deviation of spectral reflectance estimation is worse near the both ends of the wavelength scale. This is due to the luck of power in the x, y, z-bar equations at the ends. So the colorimetric accuracy is quite independent of spectral accuracy there.

LabRGB

LabRGB uses a combination of CIELAB and RGB. Encoding is done by the following steps.
a) Calculate CIEXYZ and CIELAB values of a spectral reflectance $\rho(\lambda)$
b) Substitute Eq. 2 into Eq. 1 and calculate 6 weighting factors $w_{1} \sim w_{6}$ for 6 eigenvectors in Eq. 2
where w_{1}, w_{2}, w_{3} roughly represent R, G, B component respectively. $L a b R G B$ values, obtained by the above steps, are used as encoding signals.

Decoding is done by the following steps.
a) Calculate an estimation of CIEXYZ values $\hat{X} \hat{Y} \hat{Z}$ using only w_{1}, w_{2}, w_{3} as,
$\hat{X}=\sum_{i=1}^{3} w_{i} \int e_{i}(\lambda) \cdot E(\lambda) \cdot \bar{x}(\lambda) d \lambda$
$\hat{Y}=\sum_{i=1}^{3} w_{i} \int e_{i}(\lambda) \cdot E(\lambda) \cdot \bar{y}(\lambda) d \lambda$
$\hat{Z}=\sum_{i=1}^{3} w_{i} \int e_{i}(\lambda) \cdot E(\lambda) \cdot \bar{z}(\lambda) d \lambda \quad$
b) Calculate w_{4}, w_{5}, w_{6} from the original $X Y Z$ values and estimated $\hat{X} \hat{Y} \hat{Z}$ values using Eq. 5
$X-\hat{X}=\sum_{i=4}^{6} w_{i} \int e_{i}(\lambda) \cdot E(\lambda) \cdot \bar{x}(\lambda) d \lambda$
$Y-\hat{Y}=\sum_{i=4}^{6} w_{i} \int e_{i}(\lambda) \cdot E(\lambda) \cdot \bar{y}(\lambda) d \lambda$
$Z-\hat{Z}=\sum_{i=4}^{6} w_{i} \int e_{i}(\lambda) \cdot E(\lambda) \cdot \bar{z}(\lambda) d \lambda$
c) Substituting obtained w_{4}, w_{5}, w_{6} and known w_{1}, w_{2}, w_{3} into Eq. 1

With this method, the decoding was done, and Fig. 9 shows a spectral reflectance estimation for one color from the Macbeth color chart and Fig. 10 shows the standard deviation of spectral reflectance estimation as a function of wavelength for 1000 pseudo-object colors.

LabRGB consists of two classes of physical attributes, and its eigenvectors $\operatorname{Tr} W 6$ are unique trigonometric functions. Overall Standard deviation of 1000 pseudo-object colors were 0.0389 in $L a b R G B$, and difference between $W 6$ and $L a b R G B$ were small (only 0.54%), so as $\operatorname{Tr} W 6$. Therefore an almost equivalent accuracy can be obtained.

Comparison of the encoding / decoding methods

Table 1 shows the four encoding / decoding methods described above with the three different populations of object colors. W6 eigenvectors were calculated from 1000 pseudo-object colors, so $W 6$ showed the best result for that population of object colors. Both $\operatorname{Tr} W 6$ and $L a b R G B$ were better than $W 6$ for 24 Macbeth colors and 49776 SOCS colors [6]. It can be said that $\operatorname{TrW} 6$ and $L a b R G B$ performance are almost equivalent to $W 6$ performance.

Table 2 and Table 3 show the standard deviation of colorimetric estimation error using 1000 pseudo-object colors and 49776 socs colors. Illuminant $D 65$ was used in $L a b R G B$ encoding / decoding calculation, so the combination of $L a b R G B$ and observation illuminant $D 65$ shows minimum colorimetric estimation error (almost zero). Furthermore LabRGB also worked better than $W 6$ with observation illuminant $D 50$ and A. It is because W6 minimizes spectral estimation error and $L a b R G B$ minimizes colorimetric estimation error.

Figure9. Spectral reflectance estimation using LabRGB

Figure11. W6 colorimetric estimation error under illuminant D65

Figure13. W6 colorimetric estimation error under illuminant D50

Figure 14. LabRGB colorimetric estimation error under illuminant D50

Figure15. W6 colorimetric estimation error under Illuminant A

Figure 16. LabRGB colorimetric estimation error under Illuminant A

Table2. Comparison of colorimetric estimation error (standard deviation of 1000 pseudo-object colors $\Delta E a b$)

Encoding/decoding methods	Observation illuminants		
	$D 65$	$D 50$	A
W6	1.5540	1.8730	2.4700
LabRGB	0.0006	0.2906	1.1416

Table3. Comparison of the colorimetric estimation error (standard deviation of 49776 socs colors $\Delta E a b$)

Encoding/decoding methods	Observation illuminants		
	$D 65$	$D 50$	A
W6	3.0773	3.3676	4.1670
LabRGB	0.0009	0.4757	1.7336

Table4. Comparison of the colorimetric estimation error
(standard deviation of 49776 socs colors $\Delta E a b$)

IIluminants used in LabRGB encoding/decoding calculation	Observation illuminants			Sum of $\Delta E a b$
	D65	D50	A	
A	1.8429	1.4902	0.0010	3.3340
BBR 4000 K	0.8720	0.6652	0.9558	2.4930
BBR 4500 K	0.6693	0.6061	1.2160	2.4914
D50	0.4755	0.0008	1.3588	1.8351
D65	0.0009	0.4757	1.7336	2.2103

Conclusion

Spectral encoding / decoding methods using unique eigenvectors and physically meaningful values were explored.

It was found that the unique trigonometric functions $\operatorname{TrW} 6$ can be used as eigenvectors without any or with negligible loss of accuracy. Lab2, consisting of two CIELAB values, had standard deviation of spectral reflectance estimations worse near the both ends of the wavelength, this was due to the luck of power in the x , y, z-bar equations at the ends. LabRGB consisting of CIELAB and $R G B$ and showed almost the same performance as the traditional eigenvectors $W 6$. By using $L a b R G B$, we do not have to worry about a population of object colors each time, and we can send / receive encoding signals without exchanging eigenvectors beforehand. LabRGB consists of physically meaningful attributes, so that color characteristics can be estimated by only looking at its encoding signals. LabRGB can be applied not only to spectral imaging but also to traditional tri-chromatic imaging world, so its usage is unlimited. Future plan is to apply LabRGB to a multispectral imaging system and implement a performance evaluation.

References

[1] N. Ohta, A Simplified Method for Formulating Pseudo-Object Colors, Color Res. Appl. 7, 78-81 (1982).
[2] M.W.Derhak, M.R.Rosen, Journal of Imaging Science and Technology, 50, 53-63 (2006)
[3] CIE 15: Colorimetry, Third Edition, (2004)
[4] G. Wyszecki and W. Stiles, Color Science, $2^{\text {nd }}$ ed., (Wiley, 1982).
[5] S. Tsutsumi, M. R Rosen and R. S. Berns, Spectral Color Mangement using Interim Connection Spaces based on Spectral Decomposition, Proc. of 14h CIC, 246-251 (2006).
[6] Standard Object Colour Spectra Database for Colour Reproduction Evaluation (SOCS), TR X 0012:2004, JISC (2004)

Author Biography

Fumio Nakaya received his B.S degree in Mechanical engineering from Keio University in Japan in 1976. Since 1976 he has worked in
research and development divisions at Fuji Xerox Co., Ltd in Kanagawa, Japan. His work has primarily focused on image quality and image quality design, including microscopic image structure for high quality color image using dry toner, color management in multimedia equipment and systems. He is a member of the IS\&T and the Institute of Image Information and Television Engineers.

