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Abstract
In this paper we present an algorithmic framework for spec-

tral separation of multispectral images. The proposed itera-
tive method inverts the widely used cellular Yule-Nielsen spectral
Neugebauer printer model so quickly that model inversion can
be considered for pixel-by-pixel application. Simplification and
precalculation make improvements and small modifications of the
algorithm significantly reduce the computational effort. Using to-
day’s available standard hardware allows the separation of high
resolution multispectral images in reasonable time.

Introduction
Spectral separation of multispectral images enables a

hardcopy reproduction whose color accuracy is observer and
illuminant independent. This is an advantage compared to tradi-
tional printing methods (e.g. ICC [1]) that adjust the reproduction
to a specific illuminant and observer. Traditional methods are
therefore afflicted with systematic problems such as observer and
illuminant metamerism if the viewing conditions change.

Unfortunately, typical printing systems are physically lim-
ited in reflectance spectra they can produce. Spectral gamut
mapping is thus necessary [2]. Therefore an errorless spectral
reproduction is, in general, not realizable. Nevertheless, the
metamerism can be minimized [3], the color constancy index can
be maximized [4] or other characteristics for spanning multiple
light sources can be improved.

After compressing the image to the spectral gamut of the
rendering device, suitable printer control values have to be found
to reproduce these spectra. This can be done by inverting a
spectral printer model.

A spectral printer model is a prediction function from con-
trol value space into spectral space. Various models have
been proposed in the past [5]. Because of its simplicity and
accuracy the Yule-Nielson spectral Neugebauer (YNSN) model
[6, 7, 8, 9, 10, 11] and its cellular extension [12] the cellular
Yule-Nielson spectral Neugebauer (CYNSN) model are widely
used in practice.

Since the YNSN model is analytically not invertible, dif-
ferent iterative methods have been proposed that use standard
numerical optimization techniques [13, 14, 15]. To invert the
CYNSN model gradient-based methods should not be used
without modification since the model is not differentiable on the
cell boundaries.

In this paper we present a fast and simple iterative algo-

rithm to invert the CYNSN model. This method can be used
to separate multispectral images on a pixel by pixel basis. The
proposed algorithm is based on recent work to invert the YNSN
model [16], a modification to accelerate the inversion [17] and a
method that considers the transition between cells of the CYNSN
model [18]. In this paper we combine these approaches and
present the whole system that allow a simple and fast inversion
of the CYNSN model. The article should enable the reader to
reimplement the algorithm.

The Cellular Yule-Nielson modified Neuge-
bauer Model (CYNSN)

The accuracy of the CYNSN model improves in general the
accuracy of the plain YNSN model since the physical printer
transfer function is sampled on more than the 2m Neugebauer
primaries for a m colorant printer. The drawback is the need of
more measurements. Therefore it is necessary to find a good com-
promise between measurement effort and spectral accuracy. In
our work we consider only regular subdivisions. But also other
subdivisions are possible [19]. Figure 1 shows a subdivision of
the CMY space with 8 cells. To fit the model to the printer all
reflectance spectra corresponding to the cell vertices have to be
printed and measured. For a regular grid with k grid points in
each dimension km patches have to be measured. The CYNSN
model has than (k− 1)m cells and each cell has 2m vertices that
we denote in control value space by

vI0 , . . . ,vI2m−1 ∈ [0,1]m (1)

and the corresponding spectra in reflectance space

RI0 , . . . ,RI2m−1 ∈ [0,1]N (2)

where I ∈ {0, . . . ,k−1}m is a multi-index describing the cell and
j = 0, . . . ,2m −1 numbers the vertices within the cell. For a CMY
printer this is

I0 = I +(0,0,0) I1 = I +(0,0,1)
I2 = I +(0,1,0) I3 = I +(0,1,1)
I4 = I +(1,0,0) I5 = I +(1,0,1)
I6 = I +(1,1,0) I7 = I +(1,1,1).

In Figure 1 the cell I = (0,1,1) is emphasized. The CYNSN
model for a CMY printer has the following form in each cell:

R(C,M,Y ) =

[
7

∑
i=0

aIi (C,M,Y )R1/n
Ii

]n

(3)

where I is the multi-index of the cell that contains the C,M,Y val-
ues, n is the so called Yule-Nielson factor that empirically models
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Figure 1. Partition of the colorant space into smaller cells for a CMY printer

the optical dot gain and aIi(C,M,Y ) are the Demichel equations:

aI0(C,M,Y ) = (1−cI)(1−mI)(1−yI)

aI1(C,M,Y ) = cI(1−mI)(1−yI)

aI2(C,M,Y ) = (1−cI)mI(1−yI)

aI3(C,M,Y ) = cImI(1−yI)

aI4(C,M,Y ) = (1−cI)(1−mI)yI

aI5(C,M,Y ) = cI(1−mI)yI

aI6(C,M,Y ) = (1−cI)mIyI

aI7(C,M,Y ) = cImIyI

Here the cI , mI and yI are the effective area coverages normalized

to the cell primaries, i.e. for primaries vIi =
[
vC

Ii
,vM

Ii
,vY

Ii

]
, i =

0, . . . ,7:

cI = (vC
I7
−C)/(vC

I7
−vC

I0
)

mI = (vM
I7
−M)/(vM

I7
−vM

I0
)

yI = (vY
I7
−Y )/(vY

I7
−vY

I0
)

To use the CYNSN model the theoretical control values have to
be transformed into effective area coverages using typically one
dimensional lookup tables (see e.g. [5]).

The model can be easily expanded on printers with more
than three colorants.

Inversion of the CYNSN model
The proposed algorithm is composed of three parts:

1. A method for inverting the plain YNSN model.
2. A method that perform the transitions of the iteration from

one cell to a neighboring cell
3. A small modification to reduce the number of multiplica-

tions in each iteration step and therefore to accelerate the
inversion significantly.

Inversion of the plain YNSN model
Urban et al. [16] proposed a simple method to invert the

plain YNSN model called the Linear Regression Iteration (LRI)
method. The LRI method utilizes a special property of the YNSN
model, i.e. to be multi-linear in 1/n-space. The following op-
timization problem for the inversion is considered by the LRI
method∥∥∥R(ψ)1/n − r1/n

∥∥∥
2

= min (4)

subject to

ψ ∈ [0,1]m (5)

where ψ = (ψ1, . . . ,ψm) is the vector of effective area coverages,
R(ψ) is the YNSN model (this equals the model in eq. 3 with
only one cell) and r is the reflectance spectrum to be reproduced.
Here we use discrete reflectances resulting from an sampling at N
equidistant wavelength position, i.e. r, R(ψ) are N dimensional
vectors. Typically a sampling in 10 nm intervalls between 400
nm - 700 nm is used, which results in N = 31.

It should be noticed that for reflectances within the spectral
gamut of the printer the objective function vanishes. For out-of-
gamut reflectances an implicit gamut mapping is performed that
minimizes the RMS difference in 1/n-space.

Since the YNSN model is multi-linear in 1/n-space it can
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Figure 2. Iteration sequence of the LRI method for a printer using only cyan

and magenta.

be decomposed as follows

R(ψ)1/n = �Ai(ψ) ·ψi +�Bi(ψ) (6)

where �Ai(ψ) and �Bi(ψ) are N-dimensional vectors independent
of ψi.

The colorant ψi that minimizes the objective function by
holding the other colorants fixed can be simply calculated using
linear regression, i.e.

ψOPT
i =

�Ai(ψ)T (�Bi(ψ)− r1/n)
�Ai(ψ)T�Ai(ψ)

(7)
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Iterating this equation by successively recalculating the colorants
and considering the constraint leads to the LRI algorithm with
starting point ψ0 = (ψ0

1 , . . . ,ψ0
m)

1. REPEAT {
2. FOR (i = 1; i ≤ m; i = i+1) {
3. ψi = D

[
�Ai(ψ)T (�Bi(ψ)−r1/n)

�Ai(ψ)T�Ai(ψ)

]
;

4. }
5. } UNTIL TERMINATION;

where the constraints are considered by the clipping function D

D[x] =

⎧⎨
⎩

0, x < 0
1, x > 1
x, otherwise

(8)

Possible termination criteria are described in [16] where also a
complexity estimation is presented concerning multiplication
operation.

The advantage of the LRI method compared to Newton-
based methods is its simplicity and the small number of
multiplication operation in each iteration step. Neither gradients
or Hesse-matrices need to be calculated, nor linear equation
systems have to be solved. The whole calculation in each iteration
step consists mainly in two simple matrix-vector multiplication
that are sufficient to calculate �Ai(ψ) and �Bi(ψ):

�Ai(ψ) = Ai ·�vi(ψ) (9)
�Bi(ψ) = Bi ·�vi(ψ) (10)

where Ai and Bi are N × 2m dimensional matrices that are inde-
pendent on colorants and need to be calculated only once for each
YNSN model by simply expanding and rearranging the model.
The vector �vi(ψ) has to be calculated for each iteration step and
includes the monomials of the colorants except ψi, i.e.

�vi(ψ) = wm−1(ψ) (11)

where

w1(ψ) =
[

1
ψi1

]
,

w2(ψ) =
[

w1(ψ)
ψi2 ·w1(ψ)

]
,

...

wm−1(ψ) =
[

wm−2(ψ)
ψim−1 ·wm−2(ψ)

]

with i j < i j+1 and i j �= i.

The order of convergence of the LRI method is linear, where
Newton-like methods can achieve a quadratic convergence order
near the solution. Therefore, the LRI method needs in general
more, but computationally less expensive, iteration steps.

Transition of the LRI-Iteration from Cell to Cell of
a CYNSN Model

Urban et al. [18] presented a technique to expand the LRI
method to the CYNSN model, the so called cellular LRI (CLRI)
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Figure 3. Holding C and M fixed, the search domain (red arrow) for the

optimal Y value covers two cells (black emphasized).

method. Since in each iteration step of the LRI method only
one colorant is changed by holding the other colorants fixed, a
similar approach can be used by considering more cells. Holding
m−1 colorants fixed the domain of the remaining colorant spans
only k − 1 cells. Therefore maximal k − 1 linear regressions
are necessary to find the optimal colorant that minimizes the
objective function holding the other colorants fixed.

The pre-calculated matrices introduced in eq. (9) and (10)
can be calculated for each cell of the CYNSN model in advance.
To allow a fast access to the matrices they can be arranged to a
special matrix scheme. For each cell I the following N × (m ·2m)
matrices can be formed:

ABI = [AI
1,B

I
1, . . . ,A

I
m,BI

m] (12)

By ordering all of these matrices according their multi-indices the
following matrix scheme can be constructed:

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AB(0,...,0)

AB(0,...,1)

...
AB(0,...,k−2)

AB(0,...,1,0)

...
AB(k−2,...,k−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

The final matrix has the dimension N · (k−1)m × (m ·2m).

Holding k − 1 colorants fixed, the remaining colorant ψi

has only a domain that covers k − 1 cells (see Figure 3). The
corresponding cell indices are

Ii,0 = (∗0, . . . ,∗i−1,0,∗i+1, . . . ,∗m)
...

Ii,k−2 = (∗0, . . . ,∗i−1,k−2,∗i+1, . . . ,∗m)
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and the corresponding cell matrices are

[AIi,0

i ,BIi,0

i ]
...

[AIi,k−2

i ,BIi,k−2

i ]

Since all colorants except ψi are fixed we need to calculate the
vector vi(ψ) (see equation (11)) only once. The CYNSN model
in 1/n-space in each of the considered cells is

R(ψ)1/n = AIi, j

i ·�vi(ψ) ·ψi +BIi, j

i ·�vi(ψ)

= �AIi, j

i (ψ) ·ψi +�BIi, j

i (ψ) (14)

where Ii, j is the cell that contains ψ .

Using this nomenclature it is sufficient to replace step 3 of
the LRI algorithm by the following procedure, where Ii, j is the
multi-index of the cell containing the actual colorants ψ

1. FOR (l = 0; l < k−1; l = l +1) {
2. ψi = D

[
�AIi, j

i (ψ)T (�BIi, j
i (ψ)−r1/n)

�AIi, j
i (ψ)T�AIi, j

i (ψ)

]
;

3. IF ψi = 0:
4. IF j > 0: j = j−1;
5. ELSE BREAK;

6. ELSE

7. IF ψi = 1:
8. IF j < k−2: j = j +1;
9. ELSE BREAK;

10. ELSE BREAK;

11. }

By using the matrix scheme AB for each colorant the above
procedure accesses matrices in the same columns. The transition
from one cell to its neighbor is simply performed through seeking
to the corresponding rows. The whole iteration is performed with
normalized colorants. There is no need to calculate the actual
colorants from the normalized colorants during the iteration.
After the sequence converges the resulting normalized control
values are then converted to the real effective control values.

We call this algorithm Cellular Linear Regression Iteration
(CLRI) method.

1 5 10 15 20 25 30
0

1

1 5 10 15 20 25 30
-6

0

2

can be omitted

Coefficients Coefficients

Figure 4. Left: Reflectance spectra of cell primaries in 1/n space for n =

3. Right: The same reflectance spectra transformed into the subspace by

multiplying with UT .

Acceleration of the Algorithm by small Modifica-
tions of the CLRI Method

In the introduction we emphasized the need of spectral
gamut mapping, because the spectral gamut of todays printers are
limited and not all natural reflectance spectra can be reproduced
in an error less way. The fact of a limited dimensionality of
the spectral printer gamut can be used as an advantage to save
computational effort.

The idea of acceleration is to perform the iteration within
a low-dimensional space without changing the convergence
behavior. A look closer to the spectral gamut of the printer by
examining the set of all spectra that can be reproduced by the
CYNSN model (i.e. R([0,1]m)), shows that all reproduceable
spectra are lying within a subspace effectively spanned by the
cell primaries. This subspace is much lower in dimension than
the whole spectral space and could be a good candidate of
performing the iteration. But how can we guaranty that the
convergence behavior is not affected by the choice of the space?
To analyse this we need to investigate the space transformation
and the objective function in eq. (4). The objective function is
invariant under isometric (i.e. length preserving) transformation.
Such isometric transformation is a multiplication with any real
valued, unitary matrix. If X is a N ×N dimensional real valued,
unitary matrix (XT X = XXT = I) than the following equation
applies

∥∥∥R(ψ)1/n − r1/n
∥∥∥

2
=

∥∥∥X ·
(

R(ψ)1/n − r1/n
)∥∥∥

2

To find an appropriate orthonormal transformation for the plain
YNSN method, Urban et. al [17] proposed to use the orthogonal
matrix resulting from the singular value decomposition (SVD) of
the matrix composed of the Neugebauer primaries in 1/n-space.
This idea can easily be expanded to the CYNSN model by using

all cell primaries in 1/n-space. If R1/n = (R1/n
1 , . . . ,R1/n

km ) is the
N × km matrix of cell primaries in 1/n-space we can decompose
the matrix using SVD as follows

R1/n = U ·S ·V T (15)

U is a real valued, N ×N-dimensional, unitary matrix and con-
tains the characteristic spectra of the cell primaries in 1/n-space
and S contains the singular values si, i = 1, . . . ,min{N,2m}, as di-
agonal elements ordered by their size, i.e. i < j ⇒ si ≥ s j. Only
q << N singular values are in general significantly larger than
zero. In our experiments with two m = 6 colorant printers and
a CYNSN model with k = 4 gridpoints q was approximately 12.
The matrix U can be decomposed into the first q columns that cor-
respond to the first q singular values and the remaining columns,
i.e. U = [Uq,UN−q]. By multiplying the cell primaries in 1/n
space by UT only q components are significantly larger than zero
(see Figure 4). Due to this coordinate transform we are able to
omit the remaining dimensions and reduce the computational ef-
fort significantly. To show that this not affect the convergence
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behavior we appraise the objective function as follows:∥∥∥R(ψ)1/n − r1/n
∥∥∥

2
(16)

=
∥∥∥UT ·

(
R(ψ)1/n − r1/n

)∥∥∥
2

(17)

=
∥∥∥UT

q ·R(ψ)1/n −UT
q · r1/n

∥∥∥
2

+
∥∥∥UT

N−q ·R(ψ)1/n︸ ︷︷ ︸
≈0

−UT
N−q · r1/n

∥∥∥
2

(18)

≈
∥∥∥UT

q ·R(ψ)1/n −UT
q · r1/n

∥∥∥
2

+
∥∥∥UT

N−q · r1/n
∥∥∥

2
(19)

In eq. (19) the second addend (i.e. ‖UT
N−q · r1/n‖2) is independent

of any colorant value. Since we are interested in colorant values
that minimize the objective function we can omit this term and
change our objective function (see eq. (4)) into∥∥∥UT

q ·R(ψ)1/n −UT
q · r1/n

∥∥∥
2

(20)

The new problem can be solved by the CLRI method as well. The
main advantage is, that we can multiply UT

q with each matrix ABI

(see eq. (12)) in advance. The only modifications of the method
are the multiplication of each reflectance spectrum r1/n with UT

q
and the new matrix scheme

ABq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UT
q ·AB(0,...,0)

UT
q ·AB(0,...,1)

...
UT

q ·AB(0,...,k−2)

UT
q ·AB(0,...,1,0)

...
UT

q ·AB(k−2,...,k−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

The main computational effort of the CLRI method is the two
matrix-vector multiplication for the linear regressions. By using
the above matrix scheme instead of the matrix scheme in eq.
(13) the number of rows of each matrix reduces to q instead of
N. Each matrix-vector multiplication has than only q × 2m−1

multiplication-operations instead of N × 2m−1. For an effective
dimension of q = 12 and a usual sampling rate of N = 31 we can
save more than 60% of the multiplications.

We called this method the Subspace Cellular Linear Regression
Iteration (SCLRI) method.

Results
To test the SCLRI method we utilize the cell primaries of

a k = 3 and k = 4 gridpoint CYNSN model of a HP Designjet
Z3100 Photo printer. Only the CMYKRG subset of the available
inks of this printer was used. To ensure that the test spectra are
within the spectral gamut of the printer we generated 1 million
control value combinations and processed them through the for-
ward model. The resulting spectra were used for the separation.
The control value combinations used in the experiment were

{0,3,7,14,24,41,65,104,163,255}6 (22)

Results for optimal q value
3 gridpoints 4 gridpoints

A, mean(∆E00) 0.45 0.41
A, max(∆E00) 15.78 19.01
D50, mean(∆E00) 0.45 0.41
D50, max(∆E00) 15.87 19.80
F11, mean(∆E00) 0.52 0.47
F11, max(∆E00) 13.55 21.7
mean(RMS) 0.003 0.003
std(RMS) 0.005 0.006
max(RMS) 0.091 0.091
time [s] 126 312

To adjust the cell primaries to the model we used the method
proposed by Chen et al. [20]. The Yule-Nielsen factor was
n = 10. To test the accuracy of the SCLRI method for different
q values, we performed the separation using q = 1, . . . ,31. For
q = 31 the SCLRI method is similar to the CLRI method, since
the sampling rate is N = q = 31. The starting point for each
iteration is paper white, i.e. (C, M, Y, K, R, G) = (0, 0, 0, 0, 0,
0). The calculations has been performed using C++ on an AMD
Athlon X2 4200+ system. Figure 5 shows the mean spectral
RMS results and the calculation time. Table 1 shows colorimetric
and spectral RMS results for the optimal q value, i.e. q = 10 for 3
gridpoint CYNSN model and q = 12 for the 4 gridpoint CYNSN
model.

The large maximal colorimetric errors result from separa-
tions of very dark colors where colorimetric errors does not
correlate with spectral RMS errors. Dark colors with a very
small spectral RMS difference can have a large colorimetric
difference. Since we are minimizing spectral differences large
colorimetric errors can be the consequence. The algorithm can be
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Figure 5. Left: Mean spectral RMS error for different q-values. Right:

Calculation time to separate 1 million spectra. Solid lines used for 3 gridpoint

CYNSN, dashed lines for 4 gridpoint CYNSN. Red lines indicate the smallest

q value of the SCLRI method with equal results to the CLRI method.

further significantly accelerated by using spatial information of
multispectral images. Since neighboring pixels of natural images
tend to be highly correlated the starting point of the iteration can
be chosen as the resulting separation of the previous calculated
neighboring pixel. This simple procedure avoid many transitions
of the iteration.

Conclusion
In this paper we present an algorithmic framework for spec-

tral separation of multispectral images. The proposed iterative
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method inverts the widely used cellular Yule-Nielsen spectral
Neugebauer model using mainly simple matrix-vector multipli-
cations in each iteration step. The transition of the iteration from
cell to cell is performed by choosing the correct matrix from a pre-
calculated matrix scheme. Small modifications of the algorithm
significantly reduce the computational effort by performing the
iteration within the subspace effectively spanned by the cell pri-
maries in 1/n-space. Using today’s available standard hardware
allows the separation of high resolution multispectral images in
reasonable time.
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