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Abstract 

The key to automatic white balancing of digital imagery is to 
estimate accurately the color of the overall scene illumination. 
Many methods for estimating the illumination’s color have been 
proposed [1-6]. Although not the most accurate, one of the 
simplest and quite widely used methods is the gray world 
algorithm [6]. Borrowing on some of the strengths and simplicity 
of the gray world algorithm, we introduce a modification of it that 
significantly improves on its performance while adding little to its 
complexity. 
 
Introduction 

The key to automatic white balancing of digital imagery is to 
estimate accurately the color of the overall scene illumination. 
Many methods for estimating the illumination’s color have been 
proposed [1-6]. Although not the most accurate, one of the simplest 
and quite widely used methods is the gray world algorithm [6]. 
Borrowing on some of the strengths and simplicity of the gray 
world algorithm, we introduce a modification of it that 
significantly improves on its performance while adding little to its 
complexity.  

The standard gray world algorithm is based on the assumption 
that the average surface color in a scene is gray so that when an 
image’s colors are averaged, any departure from gray reflects the 
color of the scene illumination. The proposed extension first 
identifies colors that are likely to be from truly gray surfaces, and 
then averages only those colors. The trick is in the identification of 
gray surfaces. Note that we must make a distinction between the 
color of the surface as it would appear under white light and the 
image color of that same surface under the unknown scene 
illumination. We can not simply average image colors that are gray 
since that would tell us nothing other than that gray colors are gray. 
To find the surfaces that are gray, but do not necessarily appear 
gray in the image because of the effect of the illumination, we use 
a color coordinate system[7] that encodes illumination and surface 
reflectance along different axes. By comparison, Cooper [8] 
describes how to determine near neutral regions based on image 
segmentation in L*a*b* coordinates. 

 
LIS Color Coordinates 

The goal of the LIS color coordinate system is to represent the 
3 components of a color in terms of the underlying physical 
components that generated the color, in particular, 
luminance/intensity, incident illumination color, and the surface 
reflectance color. Of course, this goal cannot actually be met 
without additional information, but it can be approximated to a 
useful extent. Since the coordinates represent luminance, 
illumination color and surface reflectance as separate dimensions, 
hence the designation “LIS coordinates”. The LIS coordinate 
system was proposed Finlayson and Hordley [7], although they do 
not call it by that name. 

 
 

 
1 This work was done while the author was a PH.D. student at Simon Fraser 
University. 

Experimenting with the LIS channels showed that points in it 
having an S coordinate of zero were generally gray. They are not 
just gray in RGB image space, but represent gray surface colors 
because they are in the reflectance space. To the extent that the S 
coordinate actually does represent reflectance and truly is 
independent of the illumination, this means that we can identify 
gray surfaces in an image independent of whether or not they have 
R=G=B.  The strategy for the proposed new automatic white 
balance (AWB) method, therefore, is to use the LIS coordinates to 
identify gray surfaces in the image, and then use these grays to 
estimate the illuminant color. For this final step, we convert back 
to the original RGB color space of the image and average the 
chromaticities of the grays. We call this method GSI (gray surface 
identification). 

Figure 1 shows an example of the gray-pixel detection results. 
The detected pixels are marked in white in 1(b).  The 
chromaticities of these pixels in 1(a) can be averaged to obtain the 
color of the illuminant for AWB. 

 

 
(a) 

 
(b) 

Figure 1 (a) Input image; (b) Pixels identified as gray are indicated in 
white. 
LIS coordinates [7] are based on two assumptions: (1) 
that the illuminants are blackbody radiators; and (2) that 
the camera’s response functions are narrowband and can 
be modeled as Dirac delta functions. The implication of 
the first assumption is that the illuminants can be 
modeled as a function of a single parameter, namely, the 
blackbody temperature. The implication of the second 
assumption is that each of the RGB channels is affected 
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by only a single distinct wavelength of the incoming 
spectrum. Under these assumptions, Finlayson and 
Hordley [7] show that for a given camera, (log R/G, log 
B/G) is an illumination-invariant color chromaticity 
space in which the values of same surface under various 
illuminations tend to fall on a straight line and lines from 
different surfaces are parallel. For a fixed surface 
reflectance, varying the intensity and color temperature 
of the illumination incident on it causes the logarithm of 
the camera response [log R, log G, log B] to move within 
a plane. Different surface reflectances yield parallel 
planes. The S axis of the LIS system is defined 
perpendicular to these planes. The L (luminance) axis and 
I (illumination ‘color’) axis are then orthogonal to the S 
axis.  

Although in theory the logarithm of the camera responses [log 
R, log G, log B] obtained from a given surface under all possible 
colors and intensities of illumination are predicted to lie in a plane, 
do they in practice? Clearly, the blackbody-radiator and 
Dirac-delta assumptions are strong ones, and are likely to be 
violated. However, for [log R, log G, log B] data synthesized based 
on the SONY DXC-930 sensitivity functions, the 102 illuminant 
spectra from the Simon Fraser University database [9] and the 
surface reflectance of the 24 Macbeth Colorchecker surface 
patches, PCA (principal component analysis) determines the plane 
and establishes that the first 2 dimensions explain 99.1% percent of 
the variance. These 102 illuminants are not specifically blackbody 
radiators, but common light sources found around a university 
campus. Similarly, although the camera sensitivity functions [9] 
are relatively sharp with little overlap between them, they are taken 
from a real camera, and certainly violate the Dirac-delta 
assumption. Despite violating the assumptions, the fit of a plane to 
the data is surprisingly good. 
 
GSI Implementation  

The first issue in terms of implementing the GSI color 
constancy algorithm is that the LIS system is camera dependant 
and must be determined for the camera being used. There are two 
methods to do this depending on whether or not the camera’s 
spectral sensitivity response functions are known.  If they are 
known, then they can be used to calculate camera responses for 
spectra synthesized as the product of illuminant and reflectance 
spectra chosen from a database of spectra. If the camera’s spectral 
sensitivity curves are not known, then real values can be obtained 
by using the camera to take images of a gray card under several 
different illuminants. PCA is then applied to the logarithm of 
RGBs from the gray card. The vector corresponding to the 
maximal eigenvalue forms the intensity axis, the next vector forms 
the illumination axes, and the vector corresponding to the least 
eigenvalue is the surface reflectance axis. 

To estimate the illumination for an image of N pixels [Ri, Gi 
Bi], each pixel is first classified as to whether or not it belongs to 
the class of gray pixels. To classify a pixel, the logarithm of each 
channel is taken producing [logRi, logGi, logBi] which is then 
projected onto the S axis of the LIS coordinate system via vector 
inner product.  If the resulting value is less than a specified 
threshold value then the pixel is classified as gray.  

The GSI method estimates the color [Re ,Ge ,Be] of an image’s 
illumination according to 
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where ‘isgray’ is the test that classifies pixels as gray or not. 
An example of the GSI method is shown in Figure 1. The 

isgray test identifies as gray those pixels from Figure 1(a) that are 
shown in white in Figure 1(b)). The true scene illumination as 
measured from a gray card is [0.2476, 0.2910, 0.4614]. The 
standard gray world method averages the RGBs of all pixels so 
that the estimated illumination is found to be [0.4748, 0.2348, 
0.2903].  The GSI method, however, averages only the RGB of 
pixels that pass the isgray test with the result that the illumination 
is estimated to be [0.2810, 0.3290, 0.3899].  Clearly, this latter 
estimate is much closer to the true value. This example shows the 
potential of the GSI method; rigorous tests are presented in the 
next section. 

 
Experiments   

The GSI method was implemented in MATLAB 7.0.1 [10] To 
evaluate GSI’s illumination estimation and compare it to other 
methods, the algorithm was tested on two datasets of real images. 
The first one includes the 321 images of the SFU dataset [9], 
which are of scenes in a laboratory setting. The second set is the 
much larger and more varied image collection that Ciurea et. al. 
[11] built using a digital video camera.  

In evaluating performance, we use error measures based on 
Euclidean distance and angular difference between the estimated 
and true illumination chromaticity values. Given and illumination 
estimate [Re, Ge, Be], its corresponding chromaticity values are 
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Let [rr gr br] be the true illumination chromaticity.  The distance 
error in 2D chromaticity space and angular error in 3D 
chromaticity space are defined as: 
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For test set of N images, we also report the maximum, median and 
RMS errors 
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To evaluate whether one method is statistically better than 
another, we also use the Wilcoxon signed-rank test with 0.01 
threshold for accepting or rejecting null hypothesis [12].  

The first experiment uses Barnard’s [9] 321 images captured 
using a calibrated SONY DXC-930 camera. These images are from 
33 different scenes under 11 different lights that represent a 
cross-section of common lights. Since the spectral sensitivity 
functions of the camera are known and the calibration images are 
available on the Internet [9], this data set provides a means of 
comparing LIS coordinates extracted based on synthetic versus real 
data. For the synthetic case, we synthesize RGB values for the 
measured percent spectral reflectance of 24 Macbeth ColorChecker 
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patches and the spectral power distributions of 102 illuminants at 
15 different intensities values. Applying PCA to this data, we find 
the LIS axes as row vectors:  
[0.5994    0.5871    0.5441], 
[0.6421    0.0482   -0.7651], 
[0.4729   -0.8132    0.3358].   

To compute the LIS coordinates from real data, we have the 
RGB values from the gray card under the 11 different illuminants. 
These RGBs are then scaled by 15 different factors to create a 
RGBs that vary in intensity. PCA is applied to the logarithms of the 
resulting 165 RGBs. The LIS axes obtained are: 
[0.6040    0.5807    0.5459],  
[0.6429    0.0499   -0.7643], 
[0.4711    -0.8126   0.3432]. 

Clearly, the two methods produce very similar results. The 
advantage of the real data method is that it is generally easier to 
collect images of a gray card under a dozen or so different 
illuminants than it is to determine a camera’s spectral sensitivity 
functions. 

Having determined the LIS coordinates, we can proceed to 
test the GSI method. Since 321 is a small number of images, we 
use leave-one-out cross-validation [13] in evaluating its 
performance and that of competing methods. Each method is 
trained on 320 of the images and tested on the one remaining 
image. This procedure is repeated a total of 321 times so that each 
image can be tested.  In the case of GSI, the training consists of 
choosing the optimal isgray threshold minimizing the median 
angular error over the training set. Table 1 compares GSI 
performance to that of Support Vector Regression [1] both on RGB 
data (3D) and chromaticity data (2D), to Shades of Grey [4] with 
the optimal choice of norm, to Max RGB [5] which takes the 
maximum in each of the 3 color channels as the illumination color, 
and to standard Grayworld [6]. 

Our second experiment is based on the Ciurea et. al.[10] 
dataset. Each image contains a matte gray ball in its lower right 
hand corner. The average chromaticity value of the pixels in the 
brightest region of the grayball is used as a measure of the color of 
the scene illumination in camera coordinates. The camera was 
uncalibrated, so we used the real data method to calculate the LIS 
coordinates for it based on RGBs from the gray ball. 

The original image database includes 11,346 images. 
However, many of these images have very good color balance (i.e., 
RGB of the gray ball is gray) which could bias the testing of the 
illumination estimation methods. Therefore, we eliminated from 
the data set the majority of the correctly balanced images so that 
the overall distribution of the illumination color is more uniform, 
as can be seen in Figure 2. The resulting data set contains 7661 
images.  

 
Figure 2 (a) The original data set contains 11,346 images, but the 
illumination chromaticities cluster around gray (0.33, 0.33). (b) The 
reduced data set contains 7661 images with a more uniform distribution of 
illumination chromaticity. 

 
As shown in Figure 3, the images are cropped to remove the 

gray ball, which is located at a fixed location in the lower right 
quadrant. The resulting image size is 240 by 240. 

 
 

 
(a) 

 
(b) 

Figure 3 (a) Original image containing gray ball from which the color of 
the scene illumination is determined. (b) Cropped image to be used for 
algorithm testing with gray ball removed.  
 

Neighboring images in the database tend to be related to one 
another, so we partitioned it into two disjoint subsets based on the 
geographical location where the images were acquired. Subset A 
contains 3581 images, and subset B 4080. First, subset A is used 
for training and subset B for testing, then vice versa. The errors 
from both tests are combined in the entries in Table 3 and Table 4.  
 
Conclusion 

A new color constancy method, GSI, is proposed that is based 
on detecting pixels corresponding to gray surface 
reflectance—which is not necessarily the same as gray image 
color—and using their average image color as an indicator of the 
color of the overall scene illumination. The gray surfaces are found 
by first transforming the image RGB values to the LIS coordinate 
system with axes that roughly correspond to luminance, 
illumination ‘color’ and reflectance. In LIS coordinates, values of S 
near zero tend to be gray. Tests on real images show the GSI 
method works better than Shades of Gray, Grayworld and Max 
RGB. While it is not quite as accurate as 3D SVR, it is much faster, 
does not require training, and is substantially simpler to 
implement. 
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Method SVR Dimension/ 

Norm Power 
Median 
Angle 

RMS 
Angle 

Max 
Angle 

Median 
Dist(×102) 

RMS Dist 
(×102) 

Max Dist 
(×102) 

GSI  3.91 10.11 33.79 2.71 7.15 22.65 
2D 4.65 10.06 22.99 3.41 7.5 16.41 SVR 3D 2.17 8.069 24.66 3.07 6.3 16.03 

SoG 6 3.97 9.027 28.70 2.83 6.21 19.77 
Max RGB  6.44 12.28 36.24 4.46 8.25 25.01 

GW  7.04 13.58 37.31 5.68 11.12 35.38 
Table 1 Comparison of  GSI performance to that of 2D and 3D Support Vector Regression, Shades of Grey, Max RGB, and Grayworld.  The results 
involve real-data training and testing on the 321 SONY images. Errors are based on leave-one-out cross-validation evaluation and are reported in terms of 
both the RMS angular chromaticity and distance error measures.  
 
 GSI 2D SVR  3D SVR SoG  

(norm power = 6) 
Max RGB GW 

GSI  = - = + + 
2D SVR  =  - = + + 
3D SVR  + +  + + + 
SoG (norm power = 6) = = -  + + 
Max RGB - - - -  - 
GW - - - - +  
Table 2 Comparison of the different algorithms based on Wilcoxon signed-rank test on 321 images. A ‘+’ means the algorithm listed in the corresponding the 
row is better than the one in corresponding column; a ‘-‘ indicates the opposite; an ‘=’ indicates that the performance of the respective algorithms is 
statistically equivalent. 
 

 
 
 
 
 
 

 
Table 3 Comparison of GSI error to 3D SVR, SoG, Max RGB, and Grayworld.  The results involve real-data training and testing on disjoint sets of 7,661 
images taken from the Ciurea data set. 
 
Method GSI 3D SVR SoG (norm power = 6) MAX GW 
GSI  - + + + 
3D SVR  +  + + + 
SoG (norm power = 6) - -  - = 
MAX - - +  + 
GW - - = -  
Table 4 Algorithm comparison using the Wilcoxon signed-rank test for real-data training and testing on disjoint sets of 7,661 images from the Ciurea data set.  
Labeling ‘+’, ‘-‘, ‘=’ as for Table 2. 

Angular Degrees Distance(×102) Method 
Median RMS Max Median RMS Max 

GSI 5.46 7.95 38.71 4.15 6.23 31.93 
3D SVR 4.91 7.03 24.80 3.62 5.16 18.62 

SoG 6.71 8.93 37.01 4.83 6.59 27.99 
MAX RGB 9.65 12.13 27.42 6.86 8.80 21.72 

GW 6.82 9.66 43.84 5.25 7.82 45.09 

146 Copyright 2007 Society for Imaging Science and Technology




