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Abstract
Earlier work showed that maximum entropy models can be

used to represent surface reflectance spectra of Munsell patches.
Here, we introduce a new approach to color constancy which is
based upon that work. To our knowledge, all color constancy
approaches employing spectral models use linear basis function
representations for surface and illuminant spectra. This means
that a set of basis functions has to be specified in advance in these
algorithms. The proposed maximum entropy approach does not
require this a priori information and therefore has a major ad-
vantage over other spectral based color constancy approaches.
We show that a maximum entropy approach can be used to es-
timate surface and illuminant spectra given only camera sensor
responses. We test our approach both in simulation and exper-
iment. We also show that the performance of the proposed ap-
proach is similar to the most successful spectral based color con-
stancy approach. This comparison is carried out in simulation in
the presence of noise.

Introduction
Color constancy is the ability of a vision system to compute

a measure of a surface’s color that is independent of the spectrum
of the light incident on a surface. Obtaining such a measure is es-
sential when using color as a cue in machine vision tasks, such as
object recognition. This measure can be in 3D vector form (RGB,
CMY, YIQ, etc.) or in spectral form. The latter constitutes the sur-
face reflectance spectrum, which is the amount of light reflected
off the surface at each wavelength.

Most recent work on color constancy has focused on using
3D color models [14, 15, 16] because the information they pro-
vide is sufficient for a large class of problems. However, color
constancy using spectral models can be useful when there is a
need for a more accurate representation of a color. For example,
when classifying vegetation, the difference between the colors of
leaves may be sufficiently small to require the extra information
contained in the spectral models. Moreover, employing a spectral
model for a surface color constitutes a universal representation
across different color spaces (RGB, CMY, YIQ, etc.). This can be
useful when images of the same scene are taken with cameras of
sensor spectral sensitivities belonging to different color spaces. In
this case, employing 3D color models of objects is cumbersome
in the sense that different color spaces imply different sensor re-
sponses for the same object.

Spectral models have been used in a number of color con-
stancy approaches [3, 4, 5, 11, 12, 13]. All these approaches
have one major aspect in common. They represent surface and
illuminant spectra by linear combinations of spectral basis func-
tions. These basis functions are typically obtained by performing
principal components analysis (PCA) on the sets of surface and
illuminant spectra. This means that these sets should be avail-
able prior to applying the color constancy approach. However,

these databases might not be available in advance. Even if they
are available, they might not be consistent with the data used in a
certain application.

We introduce a new maximum entropy spectral based ap-
proach to color constancy which does not require a set of basis
functions to be specified in advance. We build upon previous work
[1] in which maximum entropy models were successfully used to
estimate Munsell patch reflectance spectra given only photorecep-
tor responses. In [1] the illuminant was assumed to be constant or
white, which is not the case in this work. The use of maximum
entropy models was inspired by Jaynes, who stated that a physical
quantity frequently observed in practice will tend to a value that
can be produced in the largest number of ways [2]. In the case of
physical processes representing spectra, many surfaces observed
in our everyday-life surroundings have spectra that have high en-
tropy, as opposed to monochromatic surfaces which have low en-
tropy spectra [1].

Since we are concerned with color constancy where the il-
luminant is unknown, we seek a suitable model for the illumi-
nant spectrum. Applying Jaynes’ argument, we can say that il-
luminants observed in our everyday-life surroundings have high
entropy spectra, which therefore can be produced in the largest
number of ways. This motivates us to represent the illuminant
spectra with maximum entropy models as is the case for the sur-
face reflectance spectra.

The paper is organized as follows. First, the proposed max-
imum entropy approach is explained and derived. Second, the
performance of our approach is analyzed both in simulation and
experiment. Third, the proposed approach is compared to the best
color constancy algorithm employing spectral models. This com-
parison is performed in simulation in the presence of noise. Fi-
nally, the paper is ended with concluding remarks.

Maximum Entropy Spectral Based Color Con-
stancy

A spectral based color constancy algorithm computes sur-
face and illuminant spectra given sensor responses obtained from
a camera. The responses can be computed by the following equa-
tion:

Pk =
M

∑
λ=1

Rk(λ )s(λ )e(λ ), k = 1,2, ..., p, (1)

where p is the number of sensor classes, each denoted by k; λ de-
notes the wavelength, which is taken over the visible range. Pk is
the computed sensor response for each sensor class k, each with a
spectral sensitivity function Rk(λ ); s(λ ) is the surface reflectance
spectrum; e(λ ) is the illuminant spectrum; M is the dimension of
these spectra. Usually there are three sensor classes correspond-
ing to each of the long-, medium-, and short-wavelength ranges.

The proposed color constancy approach aims at recovering
surface and illuminant spectra by representing them using maxi-
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mum entropy models, given only sensor responses. For simplic-
ity, we illustrate the approach with the case of one surface patch
in a scene illuminated by a single light source. Note that color
constancy problems are addressed for the cases when there are at
least two surface patches in the scene, which makes our example
a hypothetical case.

In our hypothetical scene, s(λ ) is the surface spectrum and
e(λ ) is the illuminant spectrum. We represent these spectra by
probability distributions in order to compute their entropy. A
light spectrum is a collection of photons that can be thought of
as a histogram of photons over wavelength. Given a particular
photon photon0, the spectral reflectance then represents the prob-
ability of a wavelength given photon0. Therefore s(λ ), for ex-
ample, can be represented by the corresponding conditional prob-
ability distribution ps(λ |photon0). The same argument can be
applied to the illuminant spectrum whose probability distribution
representation can be denoted by pe(λ |photon0). In this paper
we adopt the notations ps(λ ) and pe(λ ) for ps(λ |photon0) and
pe(λ |photon0) for simplicity knowing that this does not affect
the following derivations. Throughout this paper we may refer
to the entropy of the probability distribution representation of a
spectrum as the entropy of a spectrum for simplicity. ps(λ ) and
pe(λ ) can be obtained from s(λ ) and e(λ ) by the following:

ps(λ ) = s(λ )/
M

∑
λ=1

s(λ ), λ = 1, ...,M, (2a)

pe(λ ) = e(λ )/
M

∑
λ=1

e(λ ), λ = 1, ...,M. (2b)

Our goal is to estimate surface and illuminant spectra by rep-
resenting each by a maximum entropy model. Jaynes showed that
given measurements in the form of expectations, which is the case
for the sensor responses given by Equation 1, the probability dis-
tribution which maximizes the entropy can be computed and is in
the form of a product of exponentials [2]:

p̂s,e(λ ) =
1
Z

p

∏
k=1

exp(αkRk(λ )) =
1
Z

exp(
p

∑
k=1

(αkRk(λ ))), (3)

where the scale factor Z is given by ∑p
k=1 exp(∑p

k=1(αkRk(λ ))).
The αk’s are the Lagrange multipliers and they are determined so
as to satisfy the constraints given in Equation 1. The probability
distribution for which the maximum entropy solution is given is
joint over the probability distribution representations of the sur-
face and illuminant spectra and is denoted by ps,e(λ ). The es-
timate of ps,e(λ ) is denoted by p̂s,e(λ ), which can be obtained
by solving for the Lagrange multipliers αk analytically. However,
due to the inherent complexity of an analytical approach, we re-
sort to a numerical one. Therefore, we seek the joint probability
distribution ps,e(λ ) that maximizes the entropy H [10] given by:

H = −
M

∑
λ=1

ps,e(λ ) log ps,e(λ ). (4)

The surface and illuminant spectra are assumed to be independent,
and therefore the corresponding probability distributions ps(λ )
and pe(λ ) are independent. This assumption is valid as the sur-
face and illuminant spectra are characteristic of the surface and

light source respectively. Making use of this independence as-
sumption, we can rewrite H [10] as:

H = −
M

∑
λ=1

ps(λ ) log ps(λ )−
M

∑
λ=1

pe(λ ) log pe(λ ), (5)

where ps,e(λ ) = ps(λ )pe(λ ). Therefore, we can now find ps(λ )
and pe(λ ) that maximize H, given the constraint in Equation 1.

After illustrating the maximum entropy approach with a one
surface patch scene, we move on to a four surface patch scene,
which is the case considered in this paper (Figure 1). The proba-

Illuminant (e(λ ))

s1(λ ) s2(λ )

s3(λ ) s4(λ )

Figure 1. A scene with four surface patches of reflectance spectra s1(λ ),

s2(λ ), s3(λ ), and s4(λ ) illuminated by one light source of spectrum e(λ ).

bility distributions representing the surface spectra s1(λ ), s2(λ ),
s3(λ ), and s4(λ ) are denoted by ps1(λ ), ps2(λ ), ps3(λ ), and
ps4(λ ) respectively and can be obtained by:

ps1(λ ) = s1(λ )/
M

∑
λ=1

s1(λ ), λ = 1, ...,M, (6a)

ps2(λ ) = s2(λ )/
M

∑
λ=1

s2(λ ), λ = 1, ...,M, (6b)

ps3(λ ) = s3(λ )/
M

∑
λ=1

s3(λ ), λ = 1, ...,M, (6c)

ps4(λ ) = s4(λ )/
M

∑
λ=1

s4(λ ), λ = 1, ...,M. (6d)

The probability distribution representation for e(λ ) can be ob-
tained using Equation 2b. We seek the joint probability distribu-
tion ps1,s2,s3,s4,e(λ ) that maximizes the entropy, denoted by H4 in
Equation 7, given the constraints imposed by the sensor responses
(Equation 12).

H4 = −
M

∑
λ=1

ps1,s2,s3,s4,e(λ ) log ps1,s2,s3,s4,e(λ ). (7)

Since we assume that the surface spectra and illuminant spectra
are independent, we can write:

ps1,s2,s3,s4,e(λ ) = ps1,s2,s3,s4(λ )pe(λ ). (8)

Moreover, we can assume that the surface spectra are independent
from each other if the surfaces are drawn randomly from a set of
surfaces with a wide range of hues. Since this is the case in this
work, the probability distribution representations of these surface
spectra are independent:

ps1,s2,s3,s4(λ ) = ps1(λ )ps2(λ )ps3(λ )ps4(λ ). (9)
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The joint probability distribution can then be written as:

ps1,s2,s3,s4,e(λ ) = ps1(λ )ps2(λ )ps3(λ )ps4(λ )pe(λ ). (10)

Therefore, we can express the entropy given in Equation 7 as:

H4 = −
M

∑
λ=1

ps1(λ ) log ps1(λ )−
M

∑
λ=1

ps2(λ ) log ps2(λ )

−
M

∑
λ=1

ps3(λ ) log ps3(λ )−
M

∑
λ=1

ps4(λ ) log ps4(λ )

−
M

∑
λ=1

pe(λ ) log pe(λ ). (11)

The constraints are given by:

P1 −RT s1e = 0, (12a)

P2 −RT s2e = 0, (12b)

P3 −RT s3e = 0, (12c)

P4 −RT s4e = 0, (12d)

where P1, P2, P3 and P4 are the sensor responses of the four sur-
faces and R is the sensor spectral sensitivities matrix of the cam-
era. Equivalently to seeking the solution that maximizes the en-
tropy H4, we seek the solution that minimizes the negative of H4.
This means that we seek the solution that minimizes the nega-
tive of the sum of the entropies of the probability distribution
representations of the spectra s1, s2, s3, s4, and e subject to the
constraints given in Equations 12a, 12b, 12c,and 12d. For this
purpose, we use a nonlinear constrained optimization algorithm
(fmincon in Matlab).

Simulation Results
We test the performance of our approach on matte Munsell

patches. These are representative of a wide range of hues encoun-
tered in printing. The corresponding spectra were measured by
Parkkinen et al. [6]. The illuminant spectra we use are those
of daylight and skylight, measured by Parkkinen and Silftsen [7],
and a set of tungsten light spectra. The set of tungsten light spectra
is composed of one spectrum at 2800K obtained from the manu-
facturer and a set of nine spectra with temperatures ranging from
2600K to 2700K and 2900K to 3500K, in steps of 100K, obtained
from the IES lighting handbook [8]. For the tungsten light spec-
trum at 2800K, we use the one obtained from the manufacturer as
it corresponds to the light we have in our laboratory. This would
result in a correct comparison between the model spectra obtained
in simulation and experiment for this particular illuminant.

The surface and illuminant spectra are multiplied to obtain
the light falling on the sensor. To obtain the simulated sensor
responses for the surface patches used, this spectrum of light is
multiplied by the sensor spectral sensitivity curves of a Panasonic
WV-CP410 camera (Equation 1 where p = 3). These sensitiv-
ity curves are obtained from the manufacturer. The wavelength
range considered for these spectra is 400 nm to 700 nm, and is
discretized into 5 nm bins. This yields a dimension of M = 61 in
Equation 1 for each spectrum. Noise is added to the responses in
the section entitled “Comparisons to Previous Work”.

We analyze the performance of our approach in the case of
four surface patches in the scene. These scenes are Mondrian

as they are composed of several overlapping, matte (lambertian)
patches. The light illuminating a Mondrian scene is assumed to
be locally constant. This means that the spectral characteristics
of the light vary slowly. The artificial scenes are constructed as
follows. Twenty surface patch and illuminant pairs are chosen at
random. Five 4-surface patch scenes are constructed from each
of these pairs by selecting the three remaining patches randomly.
Therefore, we construct a total of 100 scenes. The selection of
scenes was done in this fashion so as to allow evaluation of the
repeatability of spectral estimation in future work.

The model surface and illuminant spectra are computed for
each scene. To evaluate the performance of our approach, we nor-
malize each of the model and actual spectra to a maximum of one
as we do not intend to recover intensity information. This is a
common practice in solving color constancy problems. Then we
compute the root mean square (RMS) errors between the normal-
ized actual and model spectra for the surface patches and illumi-
nant in each scene.

We plot the model and actual spectra for one surface patch
and the illuminant in each of two scenes, one illuminated by sky-
light and one illuminated by tungsten light, in Figure 2. We de-
note the term “RMS error” by RMSE. We would like the reader to
note that the model spectra comprise a product of three exponen-
tials, one in each wavelength range (long, medium, and short).
This agrees with Equation 3, which implies that the maximum
entropy solution of the joint probability distribution of the surface
and illuminant spectra is in the form of a product of exponentials.
Therefore as one may expect, the daylight spectrum is better es-
timated by our model than the tungsten light spectrum. However,
obtaining an illumination invariant spectral model of a surface is
the main objective of our color constancy approach.

Experimental Results
While our emphasis in this paper is on the underlying the-

ory, we present some results on real scenes. We consider scenes
with two categories of surface patches: Munsell and construction
paper.

Munsell Patches

We captured images of the pages in the Munsell Book of
Color [9] with a Panasonic WV-CP410 camera. We obtained a
50x50 pixel sample from each of the Munsell patches using a seg-
mentation algorithm. Since we assume Mondrian scenes where
the illumination is locally constant, we average the 3D responses
of all the pixels in a segmented patch to obtain one 3D response
per patch. We ran the algorithm on the same 100 scenes used in
simulation. The only exception was the illumination for which
we used a tungsten light bulb of temperature 2800 K. Since we
assume flat scenes, where there is no interreflection, we input the
average responses corresponding to the patches in the scene into
our algorithm. We plot the model and actual spectra for one sur-
face patch and the illuminant from a scene in Figure 3. We can see
from the figure that the approach provides a reasonable estimate
for the surface patch spectrum shown. However, it does not do as
well in estimating the illuminant spectrum. As mentioned previ-
ously, this is due to the form of a product of exponentials model
which does not constitute a good estimate of the actual spectrum.
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(a) Munsell Patch 1009
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(b) Skylight 20
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(c) Munsell Patch 455
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(d) Tungsten Light at 2900K

Figure 2. The model and actual spectra obtained in simulation for two scenes with Munsell patches: (a) Munsell patch 1009 (RMSE = 0.0971) illuminated with

(b) skylight 20 (RMSE = 0.0892), and (c) Munsell patch 455 (RMSE = 0.1053) illuminated with (d) tungsten light at temperature 2900 K (RMSE = 0.1428).
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(a) Munsell Patch 510
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(b) Tungsten Light at 2800 K

Figure 3. The model and actual spectra obtained in experiment of (a) Munsell patch 510 (RMSE = 0.0740) and (b) tungsten light at 2800 K (RMSE = 0.3423).

Construction Paper

We segment four 30x30 pixel samples from an image of con-
struction paper patches shown in Figure 4. We average the camera
responses of all the pixels in a patch to obtain one 3D response
per patch. We feed these averages into our algorithm to obtain
the corresponding spectral estimates. Two of the surface spectral
estimates are shown in Figure 5. The actual spectra are measured
using a PR-650 spectroradiometer. We can see that the approach
provides good spectral estimates of construction paper. This is
expected as construction paper spectra have entropies similar to

those of the Munsell patches. The average entropy of the spectra
of the six construction paper samples is 3.9860, while that of all
the Munsell patches is 4.0402.

Discussion
We compare the results obtained in simulation and experi-

ment using the RMS errors between the model and actual spectra
as shown in Table 1. On the first row, we show the average of
the RMS errors of surface patches in all scenes, followed by that
of the illuminants for the simulations case. The second and third
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(a) Light Blue
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(b) Green

Figure 5. The model and actual spectra of construction paper samples, (a) light blue (RMSE = 0.1339) and (b) green (RMSE = 0.1140).

rows show equivalent results for the set of simulated scenes using
tungsten light and for the set of real scenes respectively. This table
shows that the performance of the proposed approach is similar in
simulation and experiment for the surface patch spectral estimates
in case of tungsten illumination. However, our approach does not
do as well in estimating the illuminant spectra of tungsten light
for real scenes compared to simulated scenes. Moreover, our ap-
proach does better at estimating daylight and skylight spectra than
tungsten light spectra.

Table 1. Average of the RMS errors of surface patches and
illuminants in all scenes for simulation and experimental data.

Type of Result Surface Patches Illuminants

Simulation (all lights) 0.1699 0.1762
Simulation (tungsten) 0.1492 0.2332
Experiment (tungsten) 0.1658 0.4451

Comparisons to Previous Work
As mentioned earlier, all approaches employing spectral

models use linear combinations of spectral basis functions to rep-
resent surface and illuminant spectra. The objective in these ap-
proaches is to compute the weights of these basis functions. Then
the surface and illuminant spectra can be recovered.

One of the most popular of these approaches is Maloney and
Wandell’s [3] which suffers from many limitations. First, in or-
der for a solution to exist, the number of sensor classes has to

Figure 4. An image of a few construction paper patches.

be greater than the number of basis functions used to model sur-
face spectra. Moreover, in order for the solution to be unique, the
number of surfaces in a scene has to be greater than the number of
basis functions used to model the illuminant spectrum. D’Zmura
and Iverson extended Maloney and Wandell’s approach [3] to pro-
pose the general linear recovery algorithm [11, 12]. Necessary
and sufficient conditions are determined for recovering weights
of basis functions of surface and illuminant spectra. Moreover, a
model check algorithm is proposed for unique recovery of these
weights. In [13], D’Zmura and Iverson extended their approach
to use multiple views of the same scene. All these approaches
suffer from limitations. For example, in the approach proposed in
[13], the number of views has to be less than the number of basis
functions used to represent the illuminant. Moreover, the num-
ber of basis functions used to represent each of the illuminant and
surface spectra has to be greater than the number of photoreceptor
types.

The limitations of these approaches motivated Brainard and
Freeman to introduce the Bayesian algorithm for color constancy
[4]. This algorithm builds on Maloney and Wandell’s approach
as it represents each of the surface and illuminant spectra by a
linear model. Moreover, it imposes no restrictions on the number
of surface and illuminant basis functions, nor on the number of
photoreceptor responses. This leads us to choose to compare our
proposed maximum entropy approach to the Bayesian approach,
which we describe briefly below.

The Bayesian Approach
The Bayesian approach regularizes the problem of comput-

ing the weights for the basis functions of the surface and illumi-
nant spectra [4]. The posterior distribution function is computed
over the set of surface and illuminant spectral weights given the
photoreceptor responses. The solution weights vector is the one
that maximizes the posterior if the maximum a posteriori (MAP)
rule is used to minimize the Bayesian expected loss function.

If we denote the vectors of surface and illuminant spectral
model weights by a and b respectively, and the sensor responses
by RGB (Red, Green, and Blue), we can write the posterior func-
tion p(a,b|RGB) as follows:

p(a,b|RGB) =
p(RGB|a,b) p(a,b)

p(RGB)
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∝ p(RGB|a,b) p(a,b)

= p(RGB|a,b) p(a)p(b). (13)

p(RGB|a,b) is the likelihood function which models the relation-
ship between the weights and the sensor responses. p(RGB) rep-
resents the probability of the sensor responses and is a normal-
ization term that does not affect the shape of the posterior dis-
tribution. p(a,b) represents the prior information on the model
weights. The surface and illuminant spectra can be assumed to
be independent; therefore, the prior distributions over the cor-
responding basis function weights are statistically independent
(p(a,b) = p(a)p(b)). The solution for the surface and illumi-
nant spectra basis function weights is obtained by maximizing the
posterior function.

Simulation Results
The simulated sensor responses are computed in the same

way explained previously. In this case, however, noise is added
to these responses to simulate the real world settings. Possible
sources of noise in the real world could be the flickering of the
light source while taking the images, dust on the camera lens, and
electronic noise in the camera. The added noise is modeled by a
normal distribution having a standard deviation of 5% of the entire
range of simulated responses for each of the long-, medium-, and
short- wavelength range channels. The likelihood is computed
using the model predictions of the sensor responses. The surface
spectra are represented by eight basis functions while the illumi-
nant spectra are represented by five basis functions. We perform
PCA on the set of Munsell patch spectra to obtain the basis func-
tions. The prior distributions are assumed to be Gaussian with
means and variances computed from the given databases of sur-
face and illuminant spectra.

We simulate the approach for 100 scenes where the surface
patches and illuminants are chosen at random. We assume that
there are four surface patches in the scene here as well. For each
scene, we compute the average of the RMS errors of all the sur-
face patches and the illuminants as shown in Table 2. The table
shows that the performance of our proposed approach is similar to
that of the Bayesian approach in estimating surface spectra even
though the former requires no a priori information. On the other
hand, the use of basis functions allows the Bayesian approach to
better model the illuminant spectra.

Table 2. Average of the RMS errors of surface patches and
illuminants in all scenes for the Maximum Entropy approach
and the Bayesian approach. Simulations were carried out in
the presence of noise.

Scene Component Maximum Entropy Bayesian

Surface Patches 0.3220 0.2827
Illuminants 0.3026 0.2371

Concluding Remarks
Our simulation and experimental results indicate that our

maximum entropy approach is successful in estimating surface
spectra. Obtaining a spectral model for a surface solves the color
constancy problem because this spectrum is illumination invari-
ant. The performance of the proposed approach in estimating sur-

face spectra is similar to that of the best spectral based color con-
stancy approaches which have been reported. However, the pro-
posed approach provides a major advantage in that it requires no
a priori information contrary to other spectral based approaches.
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