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Abstract 
Image segmentation is a first step to vision system and used 

for many applications such as pattern recognition, image 
classification, understanding, or picture coding. In the previous 
work, we reported unsupervised image segmentation by our 
k-means Bayesian classifier and applied it to automatic scene 
color interchange. Although Bayesian decision rule is a robust 
tool based on the minimum error criterion, it needs to preset any 
appropriate class centers before starting the classifier. Since the 
location of initial seed points much influences segmentation 
accuracy, the better color clustering is a key to success for image 
segmentation. 
This paper presents a novel approach to a non-parametric color 
clustering by introducing Parzen window and discusses how to 
estimate the probability density function and how to preset the 
reliable seed points. The paper proposes a Particle model as an 
alternative and fast algorithm for Parzen window model. 
Experimental results applied to unsupervised image segmentation 
are demonstrated.    

Introduction 
Color Image segmentation plays an important role in many 

applications. Color clustering is a low-level task in the first stage 
of pattern classification and a basis for image segmentation that 
aims at partitioning the pixel data into homogeneous regions. 
Among a great number of clustering algorithms, perhaps k-means 
algorithm is most popular and widely used. It’s an iterative method 
for finding the optimum centroid in cluster as a local minimum 
solution based on Lloyd’s algorithm [1]. Although a study on 
efficient k-means [2] to find the better candidate centers is lasting, 
nonparametric clustering algorithm is necessary for unsupervised 
image segmentation. For example, mean shift model [3] is based 
on local maxima of the probability density function in the joint 
color-spatial domain. The detection of saddle points to estimate 
the density on the clustering boundary is newly introduced to this 
model [4].   

Since color clustering has a drawback in nonuse of spatial 
information, JSEG [5] introduced an excellent post-processing of 
region growing and region merging to avoid over segmentations. 
However JSEG doesn’t use color clustering algorithm but simple 
color quantization process to make-up the class-map in the first 
stage. In the previous work [6], we introduced Bayesian classifier 
and improved the model by a combination with JSEG [7], but the 
results depended heavily on the initial “seed” points in the first 
stage of color clustering. We placed the initial seed points at the 
center of gravity in a sampled box with the higher population 
density of pixel colors and improved the performance of 
“k-means”. In our model, k-means works as a pre-processor to 

move these initial seed points into the more reliable centers, then 
to drive the main Bayesian classifier. Our k-means+Bayesian 
model [8] worked better, but nevertheless the optimum selection 
of initial seed points is left for more improvement to reflect the 
image color distribution. 

This paper focuses the “nonparametric” color clustering 
algorithm on the placement of initial seeds points from a different 
point of view and discusses how to estimate the probabilistic 
density function and find the mountain peaks of naïve distribution.  

The paper introduces the following ideas. 
 2-D “Parzen window” estimates the probability density of 

image color distribution and searches the initial seed points in 
“chrominance plane” because the colored object is mainly 
characterized by “hue” and “chroma” features. 

 3-D “Parzen window” is equivalently formed by synthesizing 
the three 2-D probability density planes in “a*-b*”, “a*-L*” 
and “b*-L*” in CIELAB space. 

 A binary “Particle” model is proposed for the faster search of 
probability density peaks as a substitute for Parzen window.  

  “Spatial filter” is applied following the Parzen window to 
find the local maxima in the probability density distribution. 

 The extracted seed candidates with the coordinates close to 
each other are merged to avoid over-segmentation. 

 The obtained initial seed points are fed to the next k-means 
process and corrected. 

 Finally, the corrected seed points by k-means drive the main 
Bayesian classifier. 

Fig.1 shows the overview of proposed basic 2-D model. 

Chrominance Density by Parzen Window 
Non-parametric Color Density Estimation 

Supposing that N pixel samples in 2-dimensional a*-b* 
chrominance plane of CIELAB space 

[ ] N~ib,a
t

iii 1 ; == ∗∗X          (1) 
are distributed according to the probabilistic density function 

( )Xp , the probability Ｐ that a vector X will fall in a region R is 
given by 
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Assuming k training samples are included in the region R, the 
probability taking k out of n for binomial density is given by 
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The expected value for k is given by binomial theorem as 
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Figure 1. Overview of proposed model (Basic 2-D model)

When ( )Xp  is continuous and region R has a small volume V,  

 ( ) ( ) ( ) nV/kpthen,Vpdp
R

≅≅∫ XXXX    (5) 

Parzen Window 
Assuming that the region Rn is a d-dimensional hyper cube 

with the side length of hn, its volume is d
nn hV = . 

Here we use a Gaussian function as Parzen window [9] 
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The number of samples falling in the hyper cube centered at 
[ ]t*b*,a=X  is given by 
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Thus, the probability density function is estimated as 
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In practice, hn is decided depending on the trained sample 
number n, like as n/hhn 1= . The selection of window size 
h1 and sample number n can be problematic. 

Detection of Maximum Probability Density in 
Chromatic Mountain   

Searching for Mountain Peaks by Spatial Filter 
The maximum points on the ridges of estimated probability 

density function will be the promising candidates for the initial 
seeds. The mountain peaks are detected by a local spatial filter.  
Most simply, the estimated ( )*b*,ap  in Eq. (8) is scanned by 
3 × 3 mask operator and the maximum peaks are detected at the 
position that the center cell in the mask has the largest value 
than any other surrounding 8 neighbors.  
The seed points are given by the CIELAB address kμ  of the 
detected maxima as  

{ } ( ){ }*b*,apmaxargSeed
k

k Xμ ==   (9) 

Fig.2 illustrates the shape of Gaussian Parzen window  
function  for two different values of hn and the 
estimated probability density function for a sample image 
“parrot”. The narrower window width hn gives the higher 
resolution but causes noisy estimation, while the wider hn gives 
a smoothed density function but loses the details. 
The sample shows 8 mountain peaks detected for the image 
“parrot” in CIELAB a*-b* chrominance plane. The 
“red-marked” points are the detected peaks by Parzen window 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure2. Detection of maximum probability density by Parzen window 
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and these initial seeds positions are moved into the more reliable 
cluster centers by k-means as shown in the “green-marked” 
points. 

Elimination of Multiple Peaks 
The peaks with close addresses are occasionally detected 

due to a small fluctuation around uncertain mixed color clusters. 
Since these multiple peaks may cause over segmentation, they 
are unified or thinned out. The multiple peaks located within 
ΔE*

ab=dmin is unified to the representative single address. 

Correction of Seed Points by k-means 
In order to place the seed candidates ( )jseedμ  at the right 

position, k-means clustering is applied to move the selected  
( )jseedμ into the more plausible address.     

k-means algorithm partitions N data points into j=1~J disjoint 
subsets Sj containing Nj data points so as to minimize the 
following sum-of-squares criterion,  
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Where μj is the geometric centroid of the data points in Sj. First 
the initial seed points ( )jseedμ  are assigned to j=1~J classes, 
then the centroid is recomputed after clustering and the seed 
points are renewed. The renewal is continued until no further 
change occurs in the centroid by iteration.  
Although k-means is used as unsupervised classifier, here we 
applied this technique to relocate the initial seeds to the more 
reliable gravity centers to be fed to Bayesian classifier. 

Extension to 3D Parzen window 
Although the colored objects with distinct “hue” and 

“chroma” may be well separated in 2-D chrominance plane, the 
3-D Parzen window is desirable for finding the better initial 
seeds points in 3-D CIELAB space with “lightness” features. 
However it’s hard to estimate the true 3-D probabilistic density 
function by 3-D Parzen window directly. Here we tried to 
synthesize the detected seeds in the three planes of “a*-b*”, 
“a*-L*” and “b*-L*” by each 2-D Parzen window into 3-D 
CIELAB space.  

The 2-D seeds are given by 

 ( ) { } ( ){ }*b*,apmaxarg*b*,aSeed
kabk Xμ ==    (11) 

 ( ) { } ( ){ }*L*,apmaxarg*L*,aSeed
kaLk Xμ ==    (12) 

 ( ) { } ( ){ }*L*,bpmaxarg*L*,bSeed
kbLk Xμ ==    (13) 

The 3-D seeds are synthesized by coupling the chrominance  
( )*b*,aSeed  with ( )*L*,aSeed  and ( )*L*,bSeed  that have 

the nearly close addresses to a* and b* of { }abkμ  as follows. 

 ( ) { }
{ } { }[ ] { } { }[ ]bLkabkaLkabk

Labk*b*,a*,LSeed
μμμμ

μ
IUI≅

=    (14) 

Here the operation { } { }[ ]aLkabk μμ I  means to combine the 

address { }abkμ  with L* of { }aLkμ  nearly matched to a* of 

{ }abkμ  and the operator  adds { } { }[ ]bLkabk μμ I  to it.  

Thus the set of 3-D initial seeds ( )*b*,a*,LSeed  is obtained. 

Fig.3 shows a synthesized example of 3-D initial seeds for 
the image “parrot”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure3. Initial seeds points by extended 3-D Parzen window model 

Binary Particle Model 
Parzen window proved to be a useful tool for unsupervised 

image segmentation based on “non- parametric” color clustering. 
However, it takes too much computation time.  

The key point in the proposal is to use Parzen window for 
searching the peaks on the mountain ridges in 2-D density 
distribution of chrominance. Since the probability p(a*, b*) in 
Eq. (8) should be calculated for all of the (a*, b*) coordinates 
and all of the pixel color values [ ] N~ib,a

t*
i

*
ii 1; ==X , it 

takes too much time. Hence the simpler and faster algorithm is 
requested in practical application. An easy alternative idea to 
find the density peaks of chrominance is to scan a*-b* plane by 
a local spatial filter as follows.  

The color distribution of pixel Xi is converted into a kind of 
“particle image” ( )*b*,ag  by placing a bi-level dot at the 
address ( )*b*,a . 
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The bi-level B/W image ( )*b*,ag  is convolved with a 
Gaussian filter. As a result, the smoothed density distribution 
image ( )*b*,aq  is obtained. 

( ) ( ) ( )
⎩⎨
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0
1    (15) 
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Since the filtered output image ( )*b*,aq  is thought to be 
reflecting the probabilistic density of chrominance for the given 
image, the same subsequent process as Parzen window model is 
applied for peak detection. Of course, the density profile of 
particle image is not equal to the probability density function, 
but it is shown that the mountain peaks approximately reflect the 
similar cluster centers to Parzen window model. 

Fig. 4 shows a result by the simplified Particle model. The 
Particle model shows a different 3-D mountain view in the 
filtered density profile of bi-level particle image from that by 
Parzen window model. The initial seed points after k-means 
correction are placed at subtle different positions but are nearly 
close to the Parzen model and resulted in the good segmentation 
for the tested images.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure4.  3-D Particle model and initial seeds synthesized from 2-D planes 

Bayesian Classifier 
According to the Bayesian decision rule, the maximum 

likelihood is obtained when the following quadratic 
discrimination function is minimized for j. 
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Where P(j) denotes the occurrence probability of class j and 
)( jXC  is the covariance matrix for X. 

Thus a color vector X is classified into class j=c, if   

{ } cBayesdJ~j
min

j == )(1    (19) 

Bayesian classifier is expected to work better when coupled 
with k-means clustering for setting the initial seed points. Here 
we call the coupled model as k-means Bayesian. 

Experimental Results 
Comparison in 2D/3D Parzen and Particle model 

The proposed Particle model worked similarly to the Parzen 
window model. Fig.5 shows a result for JIS SCID II standard 
test image “flower”. The obtained initial seeds positions look to 
be much the same for both of Parzen and Particle models. The 
simplified 2-D Particle model resulted in close to or better 
segmentations than 3-D model for this sample, because the 
colored objects are mostly characterized by the clusters in 
chrominance plane. This result showed the better segmentation 
in the details than our previous 3-D model [8].  

Performance of [k-means + Bayesian] Classifier 
K-means is a popular clustering method but needs any initial 

seeds for non-parametric segmentation. Although the proposed 
model is useful for feeding the initial seeds to k-means, we 
reported that k-means coupled with Bayesian classifier works 
better than k-means only [8].  

Fig.6 demonstrates the performance of non-parametric 
[k-means + Bayesian] classifier. The initial seeds by proposed 
models are firstly fed to the normal k-means and its output 
drives the second main Bayesian classifier. As clearly shown in 
the segmented image “parrot”, k-means coupled with Bayesian 
exhibited the better performance than the normal k-means for 
both of Parzen and Particle models. 

Comparison with JSEG 
JSEG [ ] is known as an excellent algorithm to separate the 

textural images by two steps processing of color quantization 
and spatial segmentation. The color textures are very well 
segmented by its region growing and region merging processes. 

Since the proposed algorithm lacks these spatial processes, it 
has a weakness in the segmentation of textural images. As a 
counter measure to make insensitive to the textural regions, a 
pre-processing Gaussian spatial filter was operated to the 
L*a*b* components in the proposed model.  

Fig.7 shows a segmented sample in comparison with JSEG. 
In general, JSEG is excellent in the extraction of global 
boundaries from the complicated textural regions superior to our 
algorithm, while the proposed method has the better  
performance for the detailed segmentations of individual colored 
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Figure5. Comparison in 2D/3D Parzen vs. Particle model 

object. In the “baboon” sample, it may be difficult to make the 
subjective judgment which is better. On the other hand, in the 
“flower garden” sample, JSEG is superior to our method in the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure6. [k-means+Bayesian] classifier in comparison with normal k-means  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure7. Segmentation of textural images in comparison with JSEG 
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global merging of the textural regions but worse in the boundary 
sharpness of each object rather than our method. The similar 
feature is observed in the 3rd sample image “Lizard”. 

Conclusions 
The paper presented a novel approach to the non- 

parametric color clustering algorithm by introducing Parzen 
window method to feed the initial seeds points appropriate to the 
unsupervised image segmentation.  

Though the proposed algorithm is still in progress, some of 
the experimental results claim that 

 Initial seed points for nonparametric clustering are rationally 
searched by Parzen window estimation of probabilistic 
density function. 

 The maxima of Parzen probability density function in 2-D 
chrominance plane can catch the reliable candidates for 
clustering centers of colored objects.  

 2-D Parzen window is extended to 3-D model by 
synthesizing the detected peaks in three planes of a*-b*, 
a:-L*, and b*-L*.  

 Particle distribution model is introduced as a substitute for 
the probabilistic density distributions by Parzen window and 
applied successfully to find the initial seeds positions located 
at the mountain peaks in a simple and fast way. 

 2-D Particle model is extended to 3-D model in the same 
way as Parzen window model.   

 
Further investigation and experiments on the optimum 

selection of parameters are left behind for the future works; how 

to find the optimum size of Parzen window, the sampling 
granularity and resolution of spatial filter depending on the size 
and the color gamut of the given image, and so on. 
That same thing can be said of Particle model. 
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