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Abstract
This paper shows a computational technique of how to

construct a nearly isometric transformation from a color space
with a non-Euclidean color difference formula into an Euclidean
space. The resulting transformation is a combination of a one-di-
mensional color lookup table (CLUT) to transform lightness val-
ues and a two-dimensional CLUT to transform chroma and hue
coordinates. As an example the CIEDE2000 formula and a new
optimized color difference formula for CIECAM02 was used and
a transformation into an Euclidean space was calculated. The
mean isometric disagreement was far below 3%. Color tolerance
ellipsoides were plotted for both investigated color difference for-
mulas and transformed into the new Euclidean space to illustrate
the performence of the method. A movie of how the CIEDE2000
system is embedded into an Euclidean space is made available at
the website: http://munsell.cis.rit.edu/∼pmupci/

Introduction
A perceptually uniform color space, in which Euclidean

distances highly agree with perceptual color differences, is
desired in many fields of imaging science, including color image
compression, device gamut mapping and color engineering. In
recent years much effort led to the standardization of new color
spaces like CIELAB or color appearance spaces like CIECAM02
[1]. Unfortunately, the perceptual uniformity of these spaces is
not sufficient for various applications so that new color difference
formulas were developed and standardized, such as CMC [2],
CIE94 [3] and CIEDE2000 [4, 5]. Visual experiments show
that the CIECAM02 space is also not perceptually uniform and
new color difference formulas can be applied to enhance the
correlation to the visual data. These color difference formulae
are only reasonable defined for relatively small color differences,
0-5 ∆E∗

ab [6]. To calculate larger distances the geodesics have
to be calculated [7][8] that is complicated since the Euler-
Lagrange differential equation must be solved. If an isometric
transformation into an Euclidean space can be found, than the
calculation becomes much simpler, because the geodesics in
Euclidean spaces are straight lines and even large distances can
be calculated by calculating the Euclidean metric. Here the effect
of diminishing returns in color difference perception [9] (i.e.
perceived large and medium color differences are smaller than
the concatenation of threshold differences along the geodesic
between the corresponding colors) is not taken into account.

Unfortunately, an isometric (length preserving) transforma-
tion to an Euclidean space according to such a color difference
formula is not possible. The reason is the geometrical property

of the space: A necessary condition for the existence of such a
isometric transformation is that the Gaussian curvature is zero
throughout the space (Theorem Egregium) (see e.g. Wyszecki,
Stiles [8], page 658). It can be proven that this condition is not
satisfied for each of the formulas mentioned above. Since the
Gaussian Curvature of the spaces for each of these color differ-
ence formulas is small it is possible to construct a transformation
into an Euclidean space that is ”nearly” isometric, i.e. that the
disagreement between distances calculated by the formulas and
Euclidean distances in the new color space is not zero but small
enough for most applications. Since the Gaussian curvature is a
local property of a space, the disagreement between Euclidean
distances in the new space and color differences in the underlying
space is in general larger in regions where the Gaussian curvature
is large. It should also be mentioned that the statistical variability
of the visual data that is the basis of the color difference formulas
is quite high and it is possible to construct transformations into
Euclidean spaces for that the isometric disagreement is far below
the noise level of the visual data.

In this paper we show how to derive an Euclidean color
space in high agreement with a color difference formula.
Previous approaches used analytical methods to derive closed
formulas: for the CMC formula [10], for the CIE94 formula
[11, 12] and for the first quadrant of the CIEDE2000 formula
[13]. For the whole domain of the complex CIEDE2000 formula
an analytical transformation into an Euclidean space could not
be found. We present in this article a computational method that
leads to a simple color look-up table (CLUT), which transforms
a non-Euclidean color space into an Euclidean space with
minimal isometric disagreement [14]. As examples we use the
CIEDE2000 formula on CIELAB and a new color difference
formula defined using CIECAM02.

New Color Difference Formula for CIECAM02

A color-tolerance dataset was formed that consisted of the
RIT-DuPont 156 color-difference pairs [15] and the Qiao, et al. 44
hue-difference pairs [16]. CIECAM02 JCh coordinates were cal-
culated for D65, 1500 lx, background reflectance Yb = 100, and an
average surround. These 200 difference pairs all had the identical
visual difference, equivalent to a ∆E∗

ab of unity for a near neutral
centered at L∗ of 50. Nonlinear optimization was performed to
derive a new formula where the coefficient of variation was min-
imized. The equation is listed below. For this dataset, this simple
equation had equivalent performance to CIEDE2000. (These data
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were also used to derive CIEDE2000.)

∆E02−OPT =[(
∆J

kJSJ

)2

+
(

∆C
kCSC

)2

+
(

∆H
kH SH

)2
]1/2

(1)

SJ = 0.5+(J̄/100)2 (2)

SC = 1+0.02C̄

SH = 1+0.01C̄

kJ = kC = kH = 1

Computational Euclideanization
Lightness values can be considered separately from chroma

and hue values, because lightness differences are independent of
chroma and hue for each of the color difference formulas men-
tioned in the introduction. For this reason the lightness values in
the Euclidean space can be simply calculated by integrating the
color difference formula along the lightness axis.

Calculating the Lightness of the new Euclidean
Space

For the CIEDE2000 color difference formula the lightness
L∗

00 in the new euclidean color space is defined by the following
integral :

L∗
00(L

∗) =
∫ L∗

0

dt
kLSL(t)

(3)

where

SL(t) = 1+
0.015(t −50)2√

20+(t −50)2
. (4)

This integral can be solved numerically for a large number of
equidistant L∗ values, 0 = L∗

1 ≤ ·· · ,≤ L∗
n = 100. The result

is a list of n lightness pairs [L∗
1,L

∗
00(L

∗
1)], · · · , [L∗

n,L
∗
00(L

∗
n)] that

can be used as a one dimensional CLUT to calculate the new
lightness values. Intermediate lightness values can be calculated
by means of linear interpolation. Figure 1a shows the lightness
transformation for kL = 1.

For the CIECAM02 space with the new optimized color
difference formula the following integral have to be solved:

J∗02−OPT (J) =
∫ J

0

dt
kJSJ(t)

(5)

where SJ is defined in equation (2). Here a one-dimensional
CLUT can be constructed in the same way as for the CIEDE2000
formula. Figure 1b shows the lightness transformation for kL = 1.

Calculating Lightness Independent Coordinates
of the new Euclidean Space

The calculation of chroma and hue is much more complex,
since hue differences are dependent of chroma. Particularly for
CIEDE2000, an analytical solution is difficult because the rota-
tional term depends on chroma and hue. To construct a reason-
able, nearly isometric, analytical transformation is therefore ex-
tremely difficult. We present here a computational method based
on a multigrid optimization.
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Figure 1. Lightness transformation functions a) for the CIELAB color space

with the CIEDE2000 color distance formula (kL = 1). b) for the CIECAM02

space with the new optimized color distance formula (kL = 1)

The Multigrid Optimization
We start with two rectangular grids covering the whole plane

of constant lightness with their vertices. For better understanding
we denote one grid as G1 and the other grid as G2. The grids are
constructed in a way that each mesh of grid G1 encloses exactly
one vertex of grid G2, and each mesh of grid G2 encloses one
vertex of grid G1. Figure 2 shows two starting grids in the a∗,b∗
plane of CIELAB space.
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Figure 2. Two starting grids of the multigrid optimization covering the whole

plane of constant lightness with its vertices.

In a preliminary step the distances according to the investi-
gated color difference formula are calculated between the mesh
vertices of grid G1 and the vertex of grid G2 enclosed by this
mesh. This has to be done for each mesh of grid G1 enclosing
a vertex of grid G2. Figure 3 shows this for one mesh and the
CIEDE2000 color distance formula. Additionally, the distances
between the mesh vertices of grid G2 and the enclosed vertex
of grid G1 are calculated using the investigated color difference
formula. This has to be done also for each mesh of grid G2
enclosing a vertex of grid G1. For each mesh of both grids we
store the four distances, which remain unchanged for the rest of
the calculation.

The idea of the multigrid optimization is to move the ver-
tex enclosed by a mesh in order to minimize the difference of the
distances calculated in the preliminary step and the corresponding
euclidean distances. This can be done for each vertex of grid G1
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Figure 3. Calculating the ∆E∗
00-distances between the vertices of a mesh

of grid G1 (solid lines) and the enclosed vertex of grid G2 (dashed lines) in a

preliminary step.

enclosed by a mesh of grid G2. The result is a new grid G1. Each
mesh of the new grid G1 enclose one vertex of grid G2 and we can
relocate this vertex in order to minimize again the difference of
distances calculated in the preliminary step and the corresponding
euclidean distances. This can be done for each vertex of grid G2
enclosed by a mesh of the new grid G1. The result is a new grid
G2. This procedure can be continued resulting in an iteration
that minimizes in each mesh of both grids the difference of
distances calculated by the investigated color difference formula
in the preliminary step and the corresponding euclidean distances.

Mathematically, we have to solve for each mesh an opti-
mization problem that is implicitly coupled with the optimization
problems of the neighboring meshes. Each optimization problem
has the following structure

F(x) =
4

∑
i=1

(
di −‖x−yi‖2

)2 = min (6)

where di, i = 1, . . . ,4 are the distances calculated using the
investigated color difference formula in the preliminary step (see
Figure 3) and x is the vertex of one grid enclosed by the mesh
vertices yi, i = 1, . . . ,4 of the other grid.

Since the optimization problems for each grid are coupled
only one iteration step of a gradient descent method to solve
problem (6) is performed in each step of the multigrid opti-
mization. We used the steepest descent as the gradient descent
method, i.e., vertex x is relocated as follows:

xnew = x− sx ·∇F(x) (7)

where sx > 0 is a appropriate step length that ensures that the
vertex is not moving outside of the enclosing mesh.

The algorithm of the multigrid optimization has the follow-
ing form:

1. REPEAT {
2. FOR EACH VERTEX x OF G1 ENCLOSED

BY A MESH y1,y2,y3,y4 OF GRID G2:

x = x− sx ·∇F(x)
3. FOR EACH VERTEX x OF G2 ENCLOSED

BY A MESH y1,y2,y3,y4 OF GRID G1:

x = x− sx ·∇F(x)
4. } UNTIL TERMINATION;

If all gradients fall below a threshold or if the maximal disagree-
ment between euclidean distances and distances calculated in the
preliminary step does not change between two steps of the multi-
grid optimization the iteration can be terminated. Figure 4 shows
a resulting grid for the CIEDE2000 color distance formula.
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Figure 4. One of the resulting grids of the multigrid optimization for the

CIEDE2000 color difference formula. The corresponding starting grid is

shown in Figure 2 (solid lines).

Constructing the Transformation CLUT
To construct the transformation CLUT for planes of con-

stant lightness we consider one starting grid (see e.g. Figure 2)
and the corresponding resulting grid of the multigrid optimiza-
tion (see e.g. Figure 4). Each vertex of the starting grid maps to
its corresponding vertex of the resulting grid. This forms a two-
dimensional CLUT where intermediate colors can be transformed
by bilinear interpolation. The overall transformation is a com-
bination of a one-dimensional CLUT for the lightness and a two-
dimensional CLUT for the lightness independent coordinates. We
denote the CIEDE2000 isometric transformation to the Euclidean
color space by T00 and the transformation to the Euclidean space
that is isometric concerning the new optimized CIECAM02 color
difference formula by T02−OPT . The structure of the T00 trans-
formation is as follows:

T00 :

⎧⎨
⎩

CIELAB �→ R
3

(L∗,a∗,b∗) →(
L∗

00(L
∗),a∗00(a

∗,b∗),b∗00(a
∗,b∗)

) (8)

The structure of the T02−OPT transformation is similar.
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Results and Discussion
For the construction of the color space transformations

by means of the multigrid optimization we used two starting
grids with 101 and 103 grid points in each dimension. The
lattice spacings of both grids were 2.55 CIELAB units for the
CIEDE2000 color difference formula and 2.55 CIECAM02 units
for the optimized CIECAM02 color difference formula. To
visualize the performance of the color space transformation we
plotted unity color difference ellipses for both color difference
formulas in the domain space. These ellipses are shown in Figure
5a for the CIEDE2000 color distance formula in CIELAB and
in Figure 6a for the new optimized CIECAM02 color difference
formula in the CIECAM02 color space. Than we transformed
these ellipses using the CLUT transformation (see equation (8)
for CIEDE2000). Figure 5b shows the transformed ellipses for
the CIEDE2000 formula and Figure 6b shows the ellipses for the
new optimized CIECAM02 color difference formula.

Figure 5a and 6a show that the size of the ellipses are
strongly dependent on the location within the color space. In
general their size increased with increasing chroma. In 5a the
influence of the rotation term of the CIEDE2000 formula around
hue angle of 275◦ is clearly noticeable. The ellipses are rotated
here anti-clockwise. In Figures 5b and 6b the ellipses are nearly
circles independent of their location within the color space.
One exception is the area around hue angle of 275◦ for the
CIEDE2000 formula where the ellipses obviously differ from
perfect unity circles. Here, where the rotation term is active, the
magnitude of the Gaussian curvature is large and an isometric
transformation is not possible.

To quantify the magnitude of disagreement, we used the
following disagreement formula:

D00(x,y) = 100× (9)(
max{∆E∗

00(x,y),‖T00(x)−T00(y)‖2}
min{∆E∗

00(x,y),‖T00(x)−T00(y)‖2}
−1

)

A similar formula was used for the new optimized CIECAM02
color distance formula.
We chose 2 million randomly distributed colors within the
CIELAB space and within the CIECAM02 space. For each of
these colors we chose randomly a second color with a maximal
difference of 5 CIELAB units or 5 CIECAM02 units, respectively.
For the resulting 2 million color pairs in the CIELAB space and
in the CIECAM02 space we calculated the disagreement value
according to equation (9). Additionally, we calculated the PF/3
value [17]. The results are shown in Table 1.

Magnitude of disagreement
CIEDE2000 CIECAM02 OPT

mean 2.2% [D00] 1.2% [D02−OPT ]
std 3.6% [D00] 1.6% [D02−OPT ]
max 113.7% [D00] 24.6% [D02−OPT ]
PF/3 2.5 1.8

In Figure 7a CIEDE2000 differences are plotted against eu-
clidean distances after transforming the corresponding color pairs
into the new space by T00. Figure 7b shows the same plot for

the new optimized CIECAM02 color difference formula and the
T02−OPT color space transformation. In both figures the points
are lying close to unity. In Figure 7a some outliers are visible.
The corresponding colors are located around hue angle of 275◦
where the Gaussian curvature of the space is large and therefore
the isometric disagreement is large as well. Here also the largest
disagreement value of about 114% is located.

Conclusion
This paper shows a computational technique of how to

construct a nearly isometric transformation from a color space
with a non-Euclidean color difference formula into an Euclidean
space. The resulting transformation is a combination of a one-
dimensional color lookup table (CLUT) to transform lightness
values and a two-dimensional CLUT to transform chroma and
hue coordinates. As an example the CIEDE2000 formula and a
new optimized color difference formula for CIECAM02 was used
and a transformation into an Euclidean space was calculated. The
mean isometric disagreement was far below 3%.

Since geodesics in Euclidean spaces are straight lines, even
large color distances can be easily calculated. This, can be a
starting point in investigating MacAdams diminishing returns in
color distance perception effect.

In color engineering applications that minimize color dis-
tances, the calculation can be performed in the new Euclidean
space instead of dealing with a complex color difference formula
like CIEDE2000.

We provide a movie of how the CIEDE2000 system is em-
bedded into an Euclidean space using the multigrid optimization
on the website: http://munsell.cis.rit.edu/∼pmupci/
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