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Abstract 
Light reflection models for computer graphics have been 
developed over the past several decades. For real paint surfaces, it 
is possible to model their bidirectional reflectance distribution 
function with simple models. This research established a 
framework to evaluate two simple reflection models, Phong and 
Torrance-Sparrow, which were used to render artist paint surfaces 
under different illumination angles. An image acquisition system 
was set up to capture the images under selected illuminated 
angles. The parameters of the specular and the diffuse components 
were estimated with these image sequences. At the evaluation 
stage, both physical-based metrics and psychophysical techniques 
were used to evaluate the estimation accuracy of each model. For 
both methods, the comparison of the estimations of two models 
showed that better estimations were obtained from the Torrance-
Sparrow model for the glossy samples. The estimation accuracies 
of two models are almost the same for the matte samples. In 
addition, the numbers of illumination angles of the test samples 
can be minimized based on both mathematical calculations and 
psychophysical experiments. 
 

Introduction 
For realistic scenes, the spectral and geometric properties of the 
light source, object, and observer determine appearance. Thus, the 
interplay of the lighting, viewing and object properties must be 
considered in the digital reproduction of objects in display and 
print. Commonly, the photographer defines a specific set of 
geometric conditions, reducing the myriad geometric experience to 
a single representation. Alternatively, if data are available as a 
function of this interplay, known as the bidirectional reflectance 
distribution function (BRDF),1 images can be rendered for a 
variety of geometries and in combination, simulate the real-time 
viewing experience. 

 
A variety of reflection models have been proposed to calculate 
BRDF, including both physical-based and empirical models. The 
Phong2 and Ward3 models are two common empirical models, 
which were derived from measured data. Blinn4 introduced the 
Torrance-Sparrow5 physical-based light reflection model to 
computer graphics, and replaced the standard Gaussian distribution 
with ellipsoids of revolution6 in modeling microfacets. Over the 
past several decades, more physical-based models were proposed 
with more optical and physical properties and more complex 
distribution of microfacets. In addition, Dana7 defined bidirectional 
texture function (BTF) to describe the function of the texture 
surfaces. One difficulty of the measurement system is that the 
camera position must be calibrated accurately since the camera 

was moved to different locations. Malzbender8 in HP Labs 
presented polynomial texture mapping to reconstruct the 
luminance of each pixel. However, the specular component was 
not directly modeled and must be handled separately. 

 
Although there are many studies on BRDF and BTF measurement 
and 3D image rendering, research focusing on artist paint surfaces 
are limited. Hawkins9 proposed an approach to render cultural 
artifacts based on capturing the reflectance fields of the objects, 
but a large amount of images are required. Tominaga10 also 
proposed a method to record and render art paintings. However, 
only a matte oil painting was tested in his research. The purpose of 
this research was to develop a practical apparatus for the museum 
to record 2D artist paint surfaces under different illumination 
angles, and then render them with different light reflection models 
and evaluate their accuracy. Because of their mathematical 
simplicity and small number of parameters, Phong and Torrance-
Sparrow models were selected from the empirical and physical-
based models to estimate the specular and diffuse components. 
Eight different paint samples with different gloss levels were 
selected to evaluate the models. The performance of the models 
were evaluated and compared for both physical-based and 
psychophysical methods. Furthermore, the numbers of the lighting 
geometries needed to fit the model can be minimized for different 
measured samples. 

Image-based Acquisition System 

 
Figure 1. Image sequence acquisition system 

The image sequence acquisition system is shown as Figure 1. The 
Mille Luce fiber optic illumination made by StockerYale was used 
for illumination. Currently, the system has one degree of freedom 
of illumination position, which can be changed by moving the 
lighting arm. Thus, only a series of polar illumination angles 
changed with the constant azimuth illumination angle.  
 
In the viewing position, a Nikon D1 CCD camera was fixed. To 
estimate the parameters in the BRDF models, the relative radiance 
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of each pixel should be known. Thus, the opto-electronic 
conversion functions (OECF) of three channels of the camera were 
measured and calculated according to ISO 14524.11 In order to 
capture the image with 0° illumination angle, there is a small angle 
between the optical axis of the camera and sample normal.  

Lighting Reflection Models 

 
Figure 2. Light reflection geometry in terms of illumination and viewing angles 

and surface tilt angles 

Figure 2 depicts the light reflection geometry of the complex paint 
sample surface. Two normal directions are shown in the figure, the 
sample normal Z  and the surface normal N

^
 of an element dA .  

The incident and view directions are specified by i  and ( v , v ), 
respectively. The element surface normal in terms of the sample 
normal is represented by two tilt angels, n  and n . The 
illumination angle a  of the sample surface can be obtained and 
this angle changes only in the XZ plane. All the angles are defined 
as either positive or negative angles, since the same angles might 
exist on two sides of the Z-axis. The angles defined in this 
reflection geometry are different with that in traditional BRDF 
specification. The purpose of this definition is to simplify the 
mathematical calculation. 

Phong Model 
The Phong2 model controls four parameters to determine the 
gonio-radiometric values. Thus, the relative radiance in the Phong 
model is expressed as the function of the above angles depicted in 
Figure 2, shown in Eq. (1). 

Y = Ae+Ad cos i +As(cos s )
n

cos i = cos( a n )cos( n )

cos s = cos v cos r cos( v r ) + sin v sin r

sin r = sin(2 n )cos( a n )

 (1) 

where Ae , Ad  and As  are the magnitude parameters of the 
ambient, diffuse and specular components; r  is the angle between 
the plane XZ and the perfect mirror reflection direction; r  is the 
angle between the sample normal and the projection of perfect 
mirror reflection on XZ plane; s is the angle between the view 
angle and the perfect mirror reflection direction of the incident 
light; n  describes the measured shininess of the surface. 

 

Torrance-Sparrow Model 
Based on geometrical optics, Torrance and Sparrow5 derived a 
theoretical model for roughened surfaces. In this model, the 
surface element was assumed to consist of small randomly 
dispersed mirror-like facets.  This model can be described as Eq. 
(2). 

Y = Ad cos i +As
DGF

cos vn

 

 
 

 

 
 

cos i = cos( a n )cos n

cos vn = cos n cos v cos( v n ) + sin n sin v

 (2) 

where D  is the standard Gaussian distribution function of the 
direction of the microfacets and F  is the Fresnel reflection, which 
is the function of i  and refraction index n . In this research, the 
n  value of the resin, 1.5, was used. G  is defined as the 
geometrical attenuation factor and represents the remaining light 
amount after the shadowing and masking, which is a function of 

a , n , n , v  and v . 
 

Another facet distribution function that models the microfacets as 
ellipsoids of revolution, proposed by Trowbridge and Reitz,6 
provided a better match to the experimental data than that in 
Torrance-Sparrow model. In order to improve the computation 
results, this facet distribution function was used in this research, 
shown in Eq. (3). 

D =
c2

(cos
N
^
H
)2 (c2 1) +1
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 (3)                  

where c  is the eccentricity of the ellipsoids; 
N
^
H

 is the angle 

between the surface normal H  and the bisector vector of incident 
and view vectors. 

Estimation of Model Parameters  
With the image sequence under different illumination angles, the 
parameters in the models can be estimated according to the flow 
chart, illustrated in Figure 3. All the calculations were performed 
in MATLAB. Based on the Phong and Torrance-Sparrow models, 
the diffuse and specular components should be separated before 
the estimation of the parameters. One simple way to do this is to 
suppose that there is no specular component for the large 
illumination angles. Thus, it is very easy to set up a threshold of 
illumination angle for one kind of material, which can be used to 
determine the diffuse component. The separation result of a paint 
sample is shown in Figure 4. The threshold of this sample is ±35° 
from the highlight peak angle. 

Parameters Estimation for Diffuse Component 
As described in Eqs. (1) and (2), the diffuse component of the  
model only depends on the incident angle and surface normal. 
Thus, the surface orientation could be estimated from the diffuse 
component. There are five parameters in the Torrance-Sparrow 
model and six in the Phong model that need to be estimated for 
each pixel. The data were nonlinearly fitted with the ‘nlinfit’ 
function, in which the Gauss-Newton method is used. Three 
estimated diffuse magnitude values of three primaries determine 
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the color of the pixel. Since illumination angle in the system 
changes only in XZ plane, n  and the absolute value of n  can be 
obtained.  

 

Figure 3. Diagram of flow for the estimation of the model parameters 

 
Figure 4. The separation of the diffuse and specular components 

Parameters Estimation for Specular Component 
The magnitude values of the specular component should be fitted 
at first. With a collection of the highlight data, the pixel including 
the highlight peak was used to estimate the magnitude value. 
Therefore, for each pixel, v , v  and n  (or c ) should be 
estimated finally. However, the sign of n  is unknown, which 
means it is impossible to estimate v  correctly. Since the tilt 
angles of the camera were very small, the alternative method is to 
estimate v , n  (or c ) and empirical n  with the assumption that 

v  is equal to 0.  The ‘fmincon’ non-linear optimization function 
was used in this step. The advantage of this function is that several 
variables can be optimized at one time. 

Results and Discussions 
In this research, eight artist paint samples were selected and 
measured to fit the two reflection models, as shown in Figure 5. 
Samples (a), (b) and (g) were painted on smooth surfaces. The 
varnished brush marks are shown on the sample (g), while samples 
(a) and (b) are almost uniform. Samples (c) and (d) were painted 
on uniform glass surfaces. Three canvas paint samples were also 
selected, as shown in samples (e), (f) and (h). In addition, these 
samples were selected from different gloss levels, as listed in Table 
I. The gloss values of different incident angles shown in the table 
were measure with a BYK Gardner glossmeter. The gloss levels of 
samples (e) – (h) were estimated based on the observation. 

 

     

     

                     

Figure 5. The eight paint samples used to fit two reflection models 

Table I. The gloss properties of the paint samples 

 
Gloss 

Levels 

Gloss 

Values (85°) 

Gloss 

Values (60°) 

Gloss 

Values (20°) 

(a) High 83.5 66 24.3 

(b) Low 2.1 1.7 0.9 

(c) Medium 55.9 33.3 6.3 

(d) Low 4.5 2.5 0.5 

(e) Medium    

(f) Low    

(g) High    

(h) Medium    

             (a)                                  (b)                               (c) 

             (d)                                  (e)                               (f) 

                             (g)                                       (h) 
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Physical-based Evaluation of Two Models 
Based on the flowchart in Figure 3, the parameters of two models 
were estimated. The results of the estimation for the samples of 
three gloss levels are shown in Figures 6 – 8.  It is obvious that the 
diffuse component can be estimated very well with the Gauss-
Newton method. For the matte samples, such as sample (d), either 
the Phong or Torrance-Sparrow model could well estimate the 
specular component. With the increase in gloss, both models 
revealed worse fitting results for the specular component. 
However, the Torrance-Sparrow model had better fitting than the 
Phong model for the angles contained within the black ellipses 
shown in Figures 7 and 8. This indicates that the simple Phong 
model overpredicted the shininess of the sample. This result agrees 
with the experiment results of Tonsho.12   
 

 

 
Figure 6. Estimation results of a pixel of sample (d) 

Furthermore, the estimated magnitude ratios of the specular 
components to the diffuse components are listed in Table II. Since 
there are several different paints on sample (h), the ratio of the 
sample is the average ratio of all the pixels. These ratios agree with 
the glossmeter values listed in Table I. The parameter n  in Phong 
model and c  in Torrance-Sparrow Model were estimated for each 
pixel in order to obtain optimized fitting. 

Psychophysical Evaluation of Two Models 
With the parameters of the two models, the estimated images under 
a series of different illumination angles can be rendered. To best 
reproduce the colors of the samples on the LCD monitor, the color 
management flow in Figure 9 was used.  
 
To further evaluate the performance of two models, the paired-
comparison psychophysical experiment was performed. The goal 
of this experiment was to determine the preferred model under 
certain illumination angles for each sample. 

 
Figure 7. Estimation results of a pixel of sample (e) 

Table II. The estimated ratios of the specular component to the 

diffuse component 

 
Phong Model 

As/Ad 

Torrance-Sparrow Model 

As/Ad 

(a) 87.5 5793.6 

(b) 0.2 3.8 

(c) 23.8 1712.9 

(d) 0.7 17.8 

(e) 6.1 142.6 

(f) 0.2 4.3 

(g) 87.7 1752.1 

(h) 11.9 560.9 
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The data from the experiment were analyzed using Thurston’s Law 
of Comparative Judgments, Case V, and the evaluation results of 
eighteen observers are shown in Figure 10. In addition, the 95% 
confident limits were generated. The interval scales in Figure 10 
illustrate the rendering accuracy of two models compared with the 
original photographs of the samples under all the test illumination 
angles, including the angles with and without specular component. 
For the samples with higher gloss levels, such as samples (a), (c), 
(e) and (g), Torrance-Sparrow model also produces higher visual 
accuracy, as well as the computational accuracy. For the matte 
samples (b), (d) and (f), two models provide similar rendering 
accuracy. Although sample (h) was estimated with medium gloss 
level, there is very little difference of the visual accuracies between 
two models. This indicates that the observers are difficult to notice 
the highlight differences of two estimated images for the sample 
with different materials, colors and complicated surface shape.  

 
Figure 8. Estimation results of a pixel of sample (g) 

Minimization of the Number of Measurement 
Since the Torrance-Sparrow model provides better overall 
prediction, it was used to minimize the angle number of 
measurement. Also, four of the eight samples with high and 
medium gloss levels were selected, which are samples (c), (e), (g) 
and (h). For each sample, there are five different groups of angle 
number selection. With each group, the parameters of Torrance-

sparrow model were estimated. The paired-comparison experiment 
was also performed to evaluate the rendering accuracy optimized 
with different groups of angle number for seven illumination 
angles. In addition, the real images of the samples were used to 
detect if the reproduced images are significantly different with the 
real images.  

 
Figure 9. The flowchart of color management for image rendering 

 
Figure 10. Interval scale of rendering accuracy of two models 

Sample (e) was taken as an example to show the results of the 
experiment in Figure 11.  For the sample, it can found the 
rendering accuracy is high enough so that the observers cannot 
differentiate the real image from the reproduced images for all five 
groups of angle number. Correspondingly, RMS values of relative 
radiance of 20000 pixels for all illumination angles were 
calculated, as shown with blue points in Figure 12. To better 
improve the physical accuracy of the estimation with small amount 
of angle number, the angle positions should be carefully selected 
based on specular peak width and the histogram of the surface 
normal of all the pixels. Thus, for sample (e), the optimized group 
of angle number can be determined, which produces both 
rendering and physical accuracy, as shown in the red point in 
Figure 12. Therefore, this group of angle selection can be used for 
the paint samples with similar canvas surface and specular peak 
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width values. Finally, the angle numbers of measurement of other 
three samples can also be determined, as shown in Table III. 

 
Figure 11. Interval scale of rendering accuracy optimized with different groups 

of angle number selection using Torrance-Sparrow Model for Sample (e) 

 
Figure 12. RMS values of the relative radiance of 2000 pixels optimized with 

different groups of angle number selection using Torrance-Sparrow Model for 

Sample (e) 

Table III. The minimized angle number for four samples 

Sample (c) (e) (g) (h) 
Minimized 

Angle Number 
9 11 11 11 

Conclusions 
Two simple light reflection models, Phong and Torrance-Sparrow, 
were selected to estimate the gonio-radiometric properties of artist 
paint surfaces. A series of images under different illumination 
angles were captured to estimate the parameters of the model using 
MATLAB non-linear optimization functions. Eight paint samples 
with different textures and gloss levels were selected to evaluate 
the accuracy of two models. The evaluation results show that the 
diffuse components of all the samples can be estimated very well 
using both models. For the matte samples, the estimation 
accuracies of two models are almost the same. For the samples 
with higher gloss level, neither model produced perfect estimation, 
but the Torrance-Sparrow model showed better estimation 

accuracy than the Phong model. But for the samples with different 
materials and complex surface shape, two models provide similar 
visual accuracy. Furthermore, the minimized angle numbers of 
four different kinds of samples were determined with the analyses 
of their distribution of surface normal and the width of specular 
peak. 
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