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Abstract 
 
Color device calibration is the process of achieving and 
maintaining a desired color response. For printers, 
calibration is typically achieved via 1-D tone reproduction 
`curves (TRCs) applied to each of C, M, Y and K colorant 
channels. This however, can be severely restrictive in the 
amount of control. For example, 1-D TRCs can be designed 
for either gray-balance or smooth rendition of individual 
color ramps, but not both. To enable complete control, 3-
D/4-D color transforms may be used  but they are at odds 
with the goal of calibration being a lightweight transform 
with respect to measurement and computation. In 2004, Bala 
et al. proposed two-dimensional (2-D) calibration to 
facilitate a superior cost vs. control trade-off. In this paper, 
we view the design of cost-effective calibration transforms 
as a dimensionality reduction problem. We observe that the 
quality of the transform, i.e. its ability to match a true 
higher-dimensional (4-D) transform, depends on both the 
projection operator applied to high-dimensional device 
inputs, and the functional approximation built out of the 
reduced dimension variables. With that view, we develop 
techniques to significantly enhance the accuracy of 
previously proposed 2-D calibration transforms. In 
particular, we develop 2-D color transforms that allow 
complete control of cleverly selected 2-D planes in the 3-D 
CMY cube. We also develop a novel 2-D calibration LUT 
for the K channel which exploits the knowledge of printer 
GCR strategy to improve rendition of dark colors. 
Experimental results show vastly improved calibration 
ability particularly for the case of calibrating multiple 
devices to a common colorimetric aim.  
 
Key words: color calibration, dimensionality reduction, 
color control. 
 
1. Introduction 
 

Color management for output devices is commonly 
partitioned [1] into a characterization and a calibration 
transform. As an example for a four color CMYK printer, 
the characterization transform is a multidimensional 
correction that maps device independent colors (e.g. 
CIELAB) to device dependent CMYK colors. The 
calibration transform is a mapping in device dependent 
space (e.g. from CMYK to C’M’Y’K’) that maintains a 
desired printer response. This paper focuses on CMYK 
printer calibration. Since calibration is carried out 
frequently, it is desirable to make this process inexpensive 
and easy to execute. Additionally, the calibration transform 

is required to be computationally efficient with a reasonable 
memory requirement so that it can be incorporated in high-
speed real-time printing paths.  

Calibration architectures vary in the degree of 
control they provide and the underlying cost i.e. required 
measurements, storage and/or computation.  Traditional one-
dimensional (1-D) calibration implemented by using simple 
1-D LUTs from CMYK to C’M’Y’K’ is the most cost 
effective, but also significantly limits the control available 
over the device color gamut. A typical example of this 
limited control is that 1-D TRCs in a printer can be used to 
either ensure gray balance along the C = M = Y axis or to 
provide a linear response in delta-E units along each of the 
individual (C, M and Y) axis, but not both. On the other 
hand, 3-D or 4-D calibration transforms enable significantly 
more control but tend to require prohibitively large 
measurements, storage and/or real-time computation. As an 
intermediate alternative, multi-axis two-dimensional (2-D) 
calibration transforms [2] have been developed that allow 
control of multiple 1-D device axes, e.g. both neutral 
(C=M=Y) and individual colorants. 2-D calibration has been 
shown to offer an appealing trade-off between quality (i.e. 
control, accuracy) and cost (i.e. measurement, storage, 
computation).   

This paper views 2-D calibration formally as a 
dimensionality reduction problem. First, we observe that 
although 4-D calibration is somewhat impractical, a true 4-D 
transform can be used as a conceptual benchmark for all 
lower-dimensional calibration transforms. Then, it follows 
naturally that the quality of a lower-dimensional, e.g. 2-D 
calibration transform would depend on both the projection 
operator applied to the 4-D CMYK vector, and the 
functional approximation built out of the reduced dimension 
variables.  With this insight, we develop 2-D color 
calibration transforms that allow superior control over the 
device color space, while incurring modest overhead in 
measurement and computational cost.  In particular, we 
develop 2-D color transforms that allow complete control of 
selected 2-D planes in the 3-D CMY cube. This is superior 
to previous calibration methods that enable control over 
multiple 1-D loci rather than entire 2-D planar regions. We 
also develop a novel 2-D calibration LUT for the K channel 
which exploits the knowledge of printer GCR strategy to 
improve rendition of dark colors.  

 
2. Review of Printer Calibration Transforms 

 
1-D Calibration: Traditionally, calibration takes the form 
of one-dimensional tone reproduction curves (TRCs) 
applied to the individual C, M, Y, K channels, i.e. C’ = 
f1(C), M’ = f2(M), Y’ = f3(Y), K’ = f4(K). 

 
Cost vs. control: Small number of measurements is required 
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by sampling colors along the 1-D locus of interest. Memory 
requirements are also minor: for 8-bit processing, each 1-D 
LUT 256 bytes of memory for each separation.  The control 
is severely restricted though; common example is the grey-
balance vs. channel-wise linearization trade-off.  

 
3-D or 4-D lookup table based calibration1: This means 
constructing calibration transforms of the type: 

C’ = f1(C, M, Y), M’ = f2(C, M, Y), Y’ = f3(C, M, Y) or 
C’ = f1(C, M, Y, K), M’ = f2(C, M, Y, K), Y’ = f3(C, M, Y, 
K), K’ = f4(C, M, Y, K).   
 
Cost vs. control: Cost for 3-D/4-D calibration becomes 
similar to characterization, typically involving a large 
number of measurements, large LUTs and multi-dimensional 
interpolation (more computation). Clearly, complete control 
of the 3-D/4-D device space is possible. 

 
Multi-axis 2-D calibration: This is implemented by first 
constructing two-dimensional intermediate variables from 3-
D/4-D device values. An example is shown in Fig. 1. (In this 
instantiation, K is processed separately through the 
conventional 1-D calibration transform.) 

 
Cost vs. control: This approach provides the opportunity for 
a better cost-control trade-off. Clearly, 2-D LUTs in Fig. 1 
are larger than 1-D LUTs - 128 Kb vs. 256 bytes, but still 
much smaller than 3-D/4-D LUTs, which are of size 16 MB 
and 4.2 GB respectively.  In [2], Bala et al. demonstrated 
better control than 1-D calibration by calibrating multiple 1-
D loci in the 2-D tables in Fig. 1. A key example is 
simultaneous control along the primary colorant channels as 
well as the device neutral axis (the diagonal line through 
each of the C, M and Y tables).  
 
3.    Dimensionality reduction for calibration –  
A framework 
 
In Ref [2] Bala et al. demonstrated how using an 
intermediate dimensionality, i.e. 2-D, could enable a much 
better cost quality trade-off over conventional calibration 
transforms. We now formulate the problem for deriving an 
optimal lower-dimensional calibration transform. Let X 
represent the “higher-dimensional” space of device colorant 
variables, e.g. for CMYK printers, a particular x in X is a 4-
D vector comprising of C, M, Y and K values. And let the 
true higher-dimensional calibration transform be given by f 
such that  

 
(1)                                                         : YXf →

 

                                                                 
 
 

1 Such calibration transforms are not commonly used but are 
included here for completeness and for conceptual 
importance to the proposed work. 

where y in Y represents the output of the calibration 
transform, e.g. y = [C’ M’ Y’ K’]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1: Example of 2-D calibration as proposed by 
Bala et al. [2] 

 
Then the lower-dimensional calibration problem can be 

formulated as the design of a projection operator P and a 
function g( ) such that    

 
 
 
 

 
 

That is, θ is the projection of x on to a lower-
dimensional space Θ.  

The 2-D calibration LUTs presented in the previous 
subsection may now be understood as the instantiation of the 
general framework in Eqn (2) for the case when separate 
projection operators were designed for the C, M and Y 
channels. In particular, θ is a set of 3 projection operators, 
[θc, θm, θy] where θc = [C, M + Y], and analogous 
expressions hold for θm and θy . 

The formulation of Eqn. (2) reveals that there are 
two factors that determine the quality of the low-
dimensional calibration: 1.) the projection operator P, and 
2.) the actual calibration function g(.) defined on variables in 
the lower dimensional space. To fix ideas for 2-D 
calibration look up tables, g() = [gc gm gy] represent the 
values that are filled in the C, M and Y 2-D look up tables 
respectively.  

Eqn (2) suggests that with a reasonable quantitative 
description of the 4-D transform being available; we can use 
search based methods [3] to solve for the “optimal” 
projection operator. In practice however, the design of the 
projection operator is limited by the physical nature of the 
input variables as well as real-time constraints on 
processing. For example, note that the intermediate variables 
that are inputs to the 2-D look up tables in Fig. 1 cannot be 

    2-D LUT C

M + Y 

C’ 

M 

C + Y 

M’ 

Y 

C + M 

Y’ 

    2-D LUT 

    2-D LUT 

( )

(2)                          )( where

 ,)()(minarg**, 2

),(

xθ

xθx

P

dgfgP
XgP

=

−= ∫

15th Color Imaging Conference Final Program and Proceedings 49



 

 

made arbitrarily complex because they would have to be 
computed in real time for every input CMY(K) color to be 
mapped through the calibration transform.  

With the dimensionality reduction framework of Eqn 
(2) in view, this paper presents novel 2-D calibration 
transforms. In the first advancement presented in Section 4, 
novel approximation functions [gc gm gy] are derived.  
Section 5 then presents a new projection operator P applied 
to the CMYK device vector to create intermediate 2-D 
variables that index a 2-D LUT for K.  

 
 
4.  Device Calibration with Planar Control 

 
We retain the same projection operator for the CMY 2-

D tables, i.e. intermediate 2-D variables as in Fig. 1. Our 
work then focuses on constructing g()’s based on controlling 
2-D planes in the 3-D CMY cube. 

 
 
 
` 
 
 
 
 
 
 
 
 
 
 
 
    

(a) 
 
 
    
 
 
 
 
 
 
 
 
 
            

 
 
 

(b) 
 

Figure 2: (a) The primary 2-D plane used for the 
cyan LUT, (b) Projection onto cyan 2-D LUT. 

 
First we select a primary plane for accurate control. 

Fig. 2 (a) shows one example of such a plane that intersects 

with white, cyan, black, and red vertices in the CMY cube. 
Fig. 2 (b) shows the projection of this plane onto the cyan 2-
D LUT. Note that the chosen primary plane projects onto the 
entire domain of the cyan 2-D LUT. The same primary plane 
must then be projected onto the 2-D LUTs for magenta and 
yellow. These are shown in Figs. 3-4. Note that the chosen 
primary plane only projects onto a fraction of the domain for 
the magenta and yellow 2-D LUTs. The remaining portions 
of these 2-D LUTs can be used for controlling additional 
secondary planes, as shown in Figs. 4 (a) and (b). 

 
Populating the Calibration Tables 

 
The 2-D LUTs are derived with the purpose of maintaining a 
fixed defined CIELAB aim within the primary and 
secondary planes described above.  This aim could be the 
printer’s response at some reference state, the aggregate 
response of a fleet of similar devices, or the response of a 
standard device (e.g. SWOP press). We populate each of the 
tables by solving a printer-model inversion problem, which 
obtains C, M, Y, K amounts required to produce a certain 
CIELAB color.   
 
 

         
 
 
 
 

 
 

                
 

 
       

 
(a) 
 
 
 
 
 
 
 
 
 
 

 
 

 
(b) 

 
Figure 3: (a) The Magenta 2-D LUT. Note the vertices 
define the planar regions in the CMY cube in Fig. 4 (a), 
and (b) Yellow 2-D LUT;  vertices define the planar 
regions in the CMY cube in Fig. 4 (b). 
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(b) 
 

Figure 4: (a) Primary and secondary 2-D planes that 
manifest in the Magenta 2-D LUT, (b) Primary and 
secondary 2-D planes in the Yellow 2-D LUT. 
 
 
This inversion can be stated as follows: 
 
 
 
 
 
 
 
 
 
c0 represents the vector of aim CIELAB values for the CMY 
being calibrated and c represents the output CIELAB vector 
from a printer-model describing the printer to be calibrated.  
 
In practice, such a printer- model can be made by using 
measurements from the calibration targets. Preferably, the 

targets should contain CMYK patches chosen in the vicinity 
of the planes being calibrated. For more details, we refer the 
reader to [2].  Note here that the (C, M, Y) that lie on the 
primary diagonal plane in Fig. 2 manifest in each of the C, 
M and Y calibration LUTs allowing for a joint population of 
these LUTs. This ensures that the desired CIELAB color for 
all CMY on this plane is achieved. This is in contrast to 
previous multi-axis 2-D calibration schemes where most of 
these colors would be determined by an interpolation 
between a few selected 1-D axis that lie on this plane.  In the 
context of the framework of Section 3, this means that the 
g() defined over these planar regions in 2-D table is in exact 
agreement with the 4-D calibration transform f, whereas in 
the multi-axis 2-D approach [1] this exact agreement is over 
a much smaller set of colors, viz. certain 1-D loci that lie on 
this plane. 
 
5. 2-D calibration LUT for K 

 
Thus far the K channel is still handled by a 1-D 

transform. The interaction of K with CMY can however be 
crucial, e.g. for accurate rendition of dark colors. We 
propose the use of a 2-D look up table for calibrating the K 
channel. The reduced dimension 2-D vector (after projecting 
from CMYK) is defined as θ = [θ1 θ2] = [K, min (C,M,Y)]. 
We choose K as one of the axes to enable control along the 
pure K channel. The choice of min(C, M, Y) for the other 
intermediate variable was motivated by two primary reasons: 
1.) min(C, M, Y) is an intuitive estimate of the “gray 
component” in the CMY mixture and 2.) printer grey-
component replacement (GCR) [1] strategies that are crucial 
to the interaction of CMY and K typically use min(C,M,Y) 
to determine the amount of K substitution as well as the 
subtraction of C, M, and Y.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Critical loci of interest in the 2-D calibration table 
for K 
 
Populating the 2-D LUT for K (determining g()) 
 
Our basic strategy is to identify certain principal loci of 
interest in the 2-D table, derive corrections (i.e. K’) for 
those loci and then use simple linear interpolation to fill in 
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the rest of the table. The principal loci are shown in Fig. 5 
and defined as: 
 

1. “Pure K axis”: K increasing from 0-255 (in steps of 
1 for 8-bit digital processing) and C = M = Y = 0; 
conceptually this may also be understood as the 
100% GCR axis because no CMY is present. 

2.  “True device neutral locus”: This locus is obtained 
as follows: process d = C=M=Y, (d in [0,255]) 
sweep through a GCR function suitable for a given 
device to produce ),,,( KYMC . Then 

),,(min    vs. YMCK spans a 2D locus representing 
the true device neutral. Conceptually, we refer to it 
as a locus of intermediate GCR. 

3. “0% GCR locus”: This locus is described simply by 
C=M=Y=d, (d in [0,255]) sweep with K = 0.  

4. “Full CMY ON axis” : this is the 1-D axis given by 
C=M=Y=255, K increasing from 0-255 

 
The goal is to derive corrections to achieve a desired device-
independent response (in CELAB coordinates) along each of 
these loci. 

 
• The pure K axis may be populated simply by 

linearizing to a metric like deltaE from paper as in 
traditional 1-D calibration.  

• Full CMY ON axis: Note that the upper right hand 
corner of the 2-D table for K in Fig. 5. is trivially 
set to the max possible K (255 for 8 bit 
processing). We assume for the moment that the 
calibrated K value at C=M=Y=255 and K=0 is also 
available (this value comes from populating the 
“0% GCR” locus which will be explained shortly). 
The full CMY ON axis may then be populated by a 
simple interpolation technique between these 
corner points. 

•  “True device neutral locus”: This locus is made up 
of ),,(min    vs. YMCK pairs that result from 
running an equal CMY sweep through the GCR. 
Two crucial observations need to be made here: 1.) 
GCR strategies along the neutral axis preserve the 
neutrality of the C, M, Y samples, i.e. the resulting 
CMYK also has YMC == , and 2.) deciding what 
K to fill in must factor in that these ),,( YMC values 
get processed through their respective C, M and Y 
calibration transforms. As illustrated in Fig. 6, 
calibrating this locus amounts to finding the K’ 
values that will satisfy a desired CIELAB response 
when combined with the C’, M’ and Y’ (calibrated 
C, M, Y) values.  Further, because this is the 
neutral axis the aim is defined completely by a one 
dimensional locus of L* values. 

 
 

 
 
 
 
 
 
 

 

 
 

Fig. 6: Calibrating the true device neutral locus in the 
2D table for K 

 
Let g(.) represent our desired L* locus as a function of the 
digital level d in [0, 255]. Then the calibrated K’ along this 
locus is determined as 

 
 

 
 
 
where pm(C,M,Y,K) represents a Negueabuer printer model 
that provides a mapping from printer CMYK to CIELAB 
values. Further, pmL*( ) signifies that the L* value is used. 
 

• The “0% GCR locus” may then be populated in a 
manner similar to the “true device neutral locus” by 
searching for K’ values to match another 1-D locus 
in L*.  

Once these loci are populated, the rest of the table may be 
filled in using 1-D interpolation in the horizontal (i.e. min 
(C,M, Y) ) direction as shown in Fig. 5. 

 
6.  Preliminary Results 
 
6.1 Planar Control: 
 
We compare 3 different calibration methods: 
 

1. Traditional 1-D calibration: 1-D gray-balance 
calibration for C, M and Y and a 1-D deltaE from 
paper linearization calibration for K. 

2. Multi-axis 2-D calibration [2] based on 
interpolating between several 1-D axes. 

3. 2-D planar calibration as detailed in Section 4. 
 
We evaluate various calibrations for their ability to match 
the color response of a fleet of color devices. The devices in 
this experiment were three Xerox color laser printers which 
we will refer to as A, B and C. For each of the calibration 
methods, any device (A, B or C) was calibrated to match a 
common CIELAB aim. For 1-D calibration, this aim was 
defined for the neutral axis, for multi-axis 2-D calibration 
this aim was defined for each of the 1-D axes in the 2-D 
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LUTs, and for the proposed method in this invention the aim 
was defined for the CMY values corresponding to the 
selected planar regions. Table 1 shows the pair-wise deltaE 
errors between printers A and C when they were calibrated 
using different calibration methods. 
 

Calibration 
Method 

Average 
ΔE 

95th 
percentile 

ΔE 

Maximum 
ΔE 

1-D gray-
balance 

calibration 

1.65 4.66 6.07 

Multi-axis 2-D 
calibration 

1.31 2.08 4.47 

2-D planar 
calibration 

0.94 1.89 3.02 

 
Table 1. Pairwise ΔE errors for fleet calibration: A vs. C 

 
6.2   2D LUT for K: Improved accuracy in rendering 
dark colors 
 
To evaluate the ability to render dark colors we start with a 
CIELAB target of in-gamut colors corresponding to low 
luminance values (and hence substantial input K)  and use 
the (inverse) characterization to obtain the CMYK which are 
subsequently processed through each of the respective 
calibrations and then printed and measured. The deltaE 
difference of measured vs. the original Lab values gives an 
evaluation measure for the calibration. We used 216 
randomly generated Lab values (corresponding to dark 
colors) for this test. Table 2 shows how each calibration 
fares in terms of matching the original desired Lab. 
 
7. Conclusion 

 
This paper presents recent advances in two-dimensional 
printer calibration.  We formulate calibration as a  
dimensionality reduction problem. In this framework, the 
design of calibration transforms is a two-step process: 1) 
determine a projection operator applied to the 4-D CMYK 
space to yield lower-dimensional variables, and 2) design a  
functional approximation to the true 4-D calibration 
transform, where the function is evaluated on the lower-
dimensional variables. Previously known 1-D and 2-D 
calibration transforms are therefore interpreted as specific 
instantiations of our general framework. We then employ 
this novel perspective to formulate the design of 2-D 
calibration transforms as a constrained optimization 
problem.  Geometrically, our newly developed transforms 
are superior in the sense that they enable control of 2-D 
planar regions, whereas existing methods only allow control  
 
 

 
Table 2. Evaluating different calibrations for rendition of dark 
colors 
 
of multiple 1-D loci. In addition to greater accuracy, the 
methodology proposed in this paper also allows greater 
flexibility in the design of calibration transforms viz. by 
picking different primary and secondary planes. The 2-D 
calibration for K demonstrates superior control in neutral 
regions. While we apply these techniques to printing 
devices, we believe they will be quite useful for additive 
RGB displays as well. 
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Calibration 
Method 

Aver
age ΔE 

95th 
percentile 

Maxi
mum ΔE 

1-D gray-
balance  

3.21 6.11 8.02 

1-D gray-
balance for 

CMY, 2-D for K 

2.21 4.98 6.55 

Multi-axis 
2-D CMY w 1-

D for K 

2.83 4.72 6.80 

2D CMY w 
2D for K 

2.01 4.55 5.69 
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