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Abstract
Diffusion-tensor data from medical MR imaging con-

sists of a 3 × 3 symmetric positive semi-definite matrix
at each voxel. The issue of how to understand, and how
to meaningfully display this type of data has been gaining
interest since its development as a noninvasive investiga-
tive tool [1]. Several schemes have been developed, usually
aimed at the display of the spatial geometric structure of
each voxel characterized by its eigenvectors. However these
efforts have used colour merely as a visualization device,
without regard to an underlying metric structure between
voxels. At the same time, some work has been developed
on analyzing whole-brain structure using independent com-
ponent analysis, making use of similarity between tensors
to identify separated overall structures, e.g. for de-noising
of spatial features. In this paper we consider using colour
to understand these separated structures, mapping a true
metric giving a similarity measure between tensors into a
perceptually uniform colour space, so that colour difference
corresponds to true difference. We show that such a colour
map can better discriminate regions of distinct diffusion
properties in the brain than previous methods.

1. Introduction
Diffusion tensor imaging is a recent modality utiliz-

ing magnetic resonance imaging to establish strength and
direction of water-molecule diffusion paths in vivo [2]. A
pair of sharp magnetic field gradient pulses can be used to
establish the displacement of nuclei during the ‘diffusion
time’ between the two pulses. The result is an array giv-
ing diffusion rates in the xx, xy, xz, ... zz directions in a
patient-centered coordinate system. The resulting 3×3 ar-
ray is called a Diffusion “Tensor” (DT) – simply an array,
in fact, since no coordinate transformations are performed
(cf. [3]). For physical reasons, these arrays are both sym-
metric and positive semi-definite.

Analysis of such data has included establishing rea-
sonable metrics for gauging distance between tensors, and
also on visualizing the tensor data. Several metrics have
been developed [4, 5, 6] and, consequently, it is possible
to perform segmentation, smoothing, and interpolation of
such DT volume data based on these distances (see e.g.
[7]).

Colouring schemes have been centered on visualizing
the 3D structure of the array data: the fundamental anal-
ysis on such data is a principal component analysis of each
separate voxel 3 × 3 array (using Singular Value Decom-
position — SVD), identifying the first eigenvector with
the main direction of diffusion at that voxel [8]. As well,
the relative magnitudes of the set of three eigenvalues λi,
i = 1..3 have been used to identify voxels as having a
line-like (λ1 >> λ2 � λ3), plane-like (λ1 � λ2 >> λ3),
or isotropic structure (λ1 � λ2 � λ3) [9]. A key scalar
feature developed from eigenvalue data is the Fractional
Anisotropy (FA), capturing the degree of diffusion that
is anisotropic as opposed to spherical [10, 11]. The trace
of the diffusion tensor along with the FA have been use-
ful for tractography [12], the segmentation and display of

diffusion-pathway organization, particularly in the brain.
Voxel colouring has centered around portraying the di-

rection and strength of the principal eigenvector at each lo-
cation [13]. A simple approach to this problem is to colour
the three components of the first eigenvector according to
a pre-determined colour map [13], or by multiplying the
tensor by a fixed pre-specified probe vector and associat-
ing the 3-vector result with {R,G,B} [14]. To show the
dimensionality and direction of the SVD decomposition,
another approach has been to combine colour with an el-
lipsoid representation of the tensor [9]. Colour has also
been weighted by the FA measure to show directionality
and strength [15].

In these efforts, little attention has been paid to form-
ing colours that actually correspond to a difference metric
within the structure being imaged. Instead, colour is as-
signed in a straightforward way so as to visualize aspects
of the DT data. An attempt [13] made to assign colour
according to the CIELUV metric [16] was deemed “un-
satisfactory”; and this is not surprising, since again the
idea of mapping the principal eigenvector at each pixel into
{R,G,B} was used, followed by an unspecified mapping to
L�, u�, v�, presumably by way of a mapping of monitor
RGB colour to tristimulus values XYZ as in multimedia
applications (see, e.g., [17]).

Another direction in investigating DT volume datasets
has been to look at the whole dataset, rather than each
voxel separately. In [18] an Independent Component Anal-
ysis (ICA) [19] was carried out on whole-brain data, as a
preliminary analysis before traditional examination of the
trace of the tensor and its FA. The idea was to find compo-
nents related to noise, and remove them before reconstitut-
ing the tensor data from its decomposition. At the same
time, it was determined that the primary ICA component
identified the brain’s Cerebro-Spinal Fluid, and was less
noisy than the trace-of-tensor map that had been used pre-
viously. Other ICA components mapped major groups of
White Matter fibers. ICA has also been applied to Single
Photon Emission Computerized Tomography brain data,
identifying regions differing between healthy patients and
those with Parkinson’s disease [20]; and applied to Func-
tional MR data to identify regions of activation, with no
prior knowledge of expected responses required [21]. Since
ICA is a form of “blind source separation”, it has also been
used in DT analysis to distinguish multiple White Matter
fiber tracts that cross at voxel locations [22], automatically
separating out the contributing components.

In this paper, we develop a method for mapping the
full tensor data into three colour values, such that colour
has meaning in terms of a difference metric that makes
sense on diffusion tensor data. Symmetric 3× 3 voxel data
effectively has 6 unique elements. Since we are interested
in mapping to colour, we must first find a reasonable mech-
anism for descending from 6D to 3D. Here, we go by way
of an ICA analysis on whole-brain data. Since we have a
tensor metric, we can map into a colour metric such that
uniform perceptual colour differences map uniform tensor-
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metric differences.
In §2 we briefly recapitulate ICA, as applied here to

DT data, and outline an appropriate DT metric. With
the help of ICA components, we map this metric into a
perceptual colour metric in §3. Section 4 shows the efficacy
of this colour-based understanding in an application, by
showing that ICA-driven colour enhances the capability of
segmentation of the corpus callosum. We draw conclusions
in §5.

2. Log-Euclidean Metric and ICA

Diffusion Tensor Metric
As stated above, DT data consists of 3× 3 symmetric

matrix data at each voxel. Since diffusion is being mea-
sured, not all areas of the brain will show a DT signal of
non-vanishing magnitude. So in visualizing this data it
often helps to display DT MR imagery alongside conven-
tional T1- or T2-weighted MR images (these rely upon the
times for realignment of the local nuclear quadrupole mo-
ment following longitudinal and transverse magnetic field
pulses).

The question of what 9D or 6D metric makes sense,
in forming a measure of difference between DT tensors,
has been considered in detail, particularly since any opera-
tion on such tensors must not only keep the symmetric na-
ture of the arrays, but also their positive semi-definiteness
property [5, 4, 7]. A particularly promising metric is the
Log-Euclidean framework, which guarantees valid tensor
results under filtering and other operations [5, 7]. In this
simple scheme, tensor computations are carried out in the
domain of matrix logarithms: we form the matrix loga-
rithm (denoted Log) of a diffusion tensor D via an SVD
decomposition D = U Λ U T followed by the logarithm
of the diagonal of the matrix Λ of eigenvalues:

Log(D ) = Log(U Λ U T ) ≡ U log(diag(Λ ))U T (1)

Note that since D is symmetric positive semi-definite, U
is orthogonal and Λ is real, nonnegative. Zero eigenvalues
in (1) are handled by truncating the number of columns
of U , and voxels that are all-zero return a zero Log(D )
matrix.

Then in this case a Euclidean metric is a proper defi-
nition of tensor dissimilarity [5]:

d(D 1, D 2) = ‖Log(D 1) − Log(D 2)‖ (2)

In a neat formulation [5], we also notice that since
off-diagonal elements of Log(D ) must be counted twice in
eq. (2), we can go over to a completely traditional vector-
difference formulation by vectorizing the upper triangular
portion of matrix Log(D ) into a 6-vector, wherein the 4th

to 6th components are multiplied by
√

2:

E = Log(D ),

v =
(
E11, E22, E33,

√
2E12,

√
2E13,

√
2E23

)T

= vec(Log(D ))

(3)

(with the opposite transform when converting back to a

matrix, dividing three of the vector components by
√

2).
Thus, to analyze DT data, we first convert every voxel

matrix to a 6-vector.

ICA
As opposed to a more familiar Principal Component

Analysis (PCA), ICA proceeds by seeking a minimally re-
dundant, but non-orthogonal, set of basis functions. To
do so, a set of maximally statistically independent basis

vectors is found. Independence is not simply decorrelation
— PCA accomplishes that: the covariance approximates
zero in the new basis coordinate system. Instead, inde-
pendence means both decorrelation as well as the determi-
nation of signals, latent in the data, whose combinations
equal the observed signals, such that the joint probability
function amongst variables is factorizable into the product
of marginal probability functions. This leads to the very
strong result that the expectation value for the product of
any functions of the new variables equals the product of
expectation values of those functions of the new variables
(see [23] for a tutorial introduction to the use of ICA in
colour image compression).

Analyzing the whole-brain 6-vector dataset at once,
suppose the resulting set of ICA basis vectors is B . This
is a 6 × n matrix made up of set of n basis vectors b i,
i = 1..n, where n ≤ 6 is the dimensionality of the subspace
in 6-space inhabited by a set of variables explaining the
observed dataset in terms of latent processes or “sources”.
ICA is a form of blind source separation that establishes
both the subspace dimensionality n as well as the set of
vectors B . Vectors b are not orthogonal, although they
can be normalized. Therefore to form a set of coefficients
c that will act as the new set of variables in the new basis
coordinate system, we must filter the 6-vector original data
v with an n× 6 set of filters F given by the pseudo-inverse
of basis matrix B :⎧⎪⎪⎪⎨

⎪⎪⎪⎩

F = B +, where F B = I

coefficients: c = F v ,
v = vec(Log(D ))

reconstituted 6-vector: v = B c

(4)

Usually, in real medical data one finds that n = 6.

3. Diffusion Tensor Data and Perceptual
Colour

To be concrete, let us consider DT data for brain
scans1. Fig. 1 shows both T1-weighted and one compo-
nent of DT data for one slice of MR data from a dataset
of 256× 256× 55 voxels, i.e., each of 55 slices consists of a
256×256 array of data (the original data is of size 246×246
mm field-of-view at 2.2 mm slice thickness). The T1 data
is spatially registered with the DT data; T1 data is scalar,
whereas DT data is 6-dimensional, and in Fig. 1 we show
T1 and the first DT component (D1,1) for slice #25. All
data is 32-bit floating point.

Since we have settled on the Log-Euclidean metric
eq. (1) as representing a correct dissimilarity metric be-
tween DT voxel data, it is natural to map into the CIELAB
perceptually-based colour metric: the reason is that, con-
sidering for example the (normalized) luminance compo-
nent L� of the L�, a�, b� triple, stimulus is mapped into
response using a 1/3 power law; but in fact the shape of
the 1/3 power curve is very similar to that of a logarithm
[17]. I.e., both CIELAB and other perceptually-driven
metrics are manifestations of the well-known Weber’s Law
in psychology, whereby equal perception of difference is
proportional to equal percent difference: ∆Response ∝
∆Stimulus/Stimulus.

We carry out ICA using the Fastica algorithm [24],
and find n = 6 basis 6-vectors. Fig. 2 shows the relative
strengths of the six ICA coefficients c1, c2, ..., c6, for the
same slice as in Fig. 1. Here we order the six coefficients in

1Here we make use of data available at
http://lbam.med.jhmi.edu/
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(a) (b)
Figure 1. Brain MR data: (a): T1-weighted (scalar); (b): Diffusion tensor
(component D1,1).

order of overall variance of the ci (as one can do in deciding
how to quantize multi-dimensional data [23]). The data
has negatives, since it is combinations of Log(D ) data, so
has been shifted to non-negative for display, by adding one
overall constant to all coefficients. In order to carry out
ICA, we first find voxels with non-zero values, and take
the 2-dimensional spatial convex hull, to restrict the set
of data to just the brain and not the background, as in
Fig. 2(g), so as to not influence the ICA procedure by the
background. Fig. 2(h) shows the coefficient value statistics:
they are all-nonnegative for c1, but all have median zero
for the other components, and are smaller.

Having decided to map the Log(D ) metric into the
CIELAB metric, how indeed should we map 6D log-
diffusion tensor information into 3D CIELAB vectors?
Here, we argue that we can utilize the output of an ICA
decomposition to help us decide how to map into colour.

In the first place, DT data is diagonally dominant,
and nonnegative. Hence we can reasonably expect that
the most important ICA component c1 will be nonnega-
tive. Indeed, that does turn out to be the case for the
(whole-brain) data being examined in Fig. 1. If we code
“brightness” via this first ICA component, then the rest of
the 6D information can be coded using “colour”. In this
way, we code the main information into the visual channel
with the most acuity, and reserve colour as a modulating
factor encoding the remaining ICA information. Thus we
suggest coding c1 → L�, {c2..c6} → {a�, b�}.

The question then revolves around how to map the
5D information not contained in c1 into 2D colour. Ex-
amining the variances associated with the other basis sub-
spaces, they present no distinguished features, for the data
we examined, so we cannot simply take another two ICA
components as our colour content.

The information not contained in c1 consists of the
reconstituted vectors v , as in eq. (4), minus the part be-
longing to the b 1 subspace, c1b 1. Again, this new, 5-
dimensional subspace has no clear distinguished directions
(the SVD shows the 5D subspace to be fairly spherical).
Therefore we take another tack, and carry out a second
ICA analysis on the information orthogonal to b 1. In this
way, the main feature in the remaining data information
is captured in the lead component found, in a type of pro-
jection pursuit scheme. If we then go on to perform a
third and final ICA calculation on the 4D subspace result-
ing from subtraction of this result, we will arrive at three
orthogonal 6-vectors that best characterize the 6D infor-
mation in three vectors. The resulting schema is therefore
as follows:

(a) (b)

(c) (d)

(e) (f)
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Figure 2. Whole-brain 6-dimensional ICA components for Log(D ) , for
one slice. (a) to (f): ci, i = 1..6; (g): ICA is carried out on the pixels within
the convex hull of non-zero Log(D ) values. (h): Minimum (blue), maximum
(red), median (black, dashed), and standard deviation (green, dot-dashed) of
ci, i = 1..6.
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Carry out ICA on v = Log(D ) data.
Form coefficients c = F v , where F = B + is the

set of ICA filters corresponding to basis set B .
Sort basis set in descending order by variance

of coefficients ci.
Coefficient c1 = f T

1 v , where f 1 is
the first row of F = B +.

Form data set orthogonal to b 1:
v ′ = v − c1b 1.

Repeat ICA analysis, but on 5D subspace formed by v ′.
Coefficient c′1 = (f ′

1)
T v ′.

Remove contribution of c′1 and repeat ICA:
v ′′ = v ′ − c′1b

′
1; c′′1 = (f ′′

1 )T v ′′

Identify the primary ICA basis vectors with
perceptual colour:
L� ← c1; a� ← c′1; b� ← c′′1 .
Note that we now have three orthonormal analysis
6-vectors associated with colour, as follows:

�L = f 1

�a = f ′
1

�b = f ′′
1

Adjust magnitudes of a�, b� such that
Log(D ) metric eq. (2) is exactly mapped into CIELAB:

L� = (f 1)
T v ,

a� = (f ′
1)

T v ,
b� = (f ′′

1 )T v ;

g =
√

‖v ‖2 − (L�)2,

h = g/
√

(a�)2 + (b�)2,
a� = h a�,
b� = h b�.

For example, now the slice data depicted in
Fig. 2 is coloured as in Fig. 3. To derive colour from
CIELAB, we first convert to XYZ tristimulus coor-
dinates. Then we go over to a linear-sRGB colour
space [25], since the sRGB standard includes conver-
sion from XYZ to sRGB. Finally, colours are shown
in nonlinear sRGB to account for display gamma.
A video of the sRGB for all 55 slices may be found at
http://www.cs.sfu.ca/∼mark/ftp/Cic15/DTsRGB MP4V2.avi .

4. Application: Corpus Callosum Segmenta-
tion

Colour, as we have assigned it here to ICA processes,
can be more expressive than the original data itself for
tasks such as segmentation. The 6D tensor data does con-
tain noise, which ICA ostensibly can remove. As well, ICA
identifies the main information contained in the data.

As an example of the usefulness of colour, consider an-
alyzing the variance within the standardized subdivision of
the corpus callosum (CC), a nerve-fibres rich tissue con-
necting the brain hemispheres, into seven segments [26].
Fig. 4(a) shows a mid-sagittal (vertical) slice through the
sRGB output of the method presented here: the CC stands
out. The standard subdivision is shown in Fig. 4(b), where
the contrast has been enhanced by correcting the tone
curves — colours within the CC are histogram-equalized.
Fig. 4(c) shows the whole slice with these tone curves.
In contrast, consider the histogram-equalized FA measure,
shown in Fig. 4(d). The FA has previously been used to
distinguish the seven segments shown in Fig. 4(b) [27].

We can evaluate the utility of the colour mechanism
proposed here as opposed to using the FA or the original

(a) slice 5 (b) slice 50

(c) slice 24 (d) slice 26

(e) slice 25
Figure 3. sRGB values for slices near slice 25 in Fig. 2 (as well as 5th and
50th slice): (a): slice 1; (b): slice 24; (c): slice 26; (d): slice 50; (e): slice 25.
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(a)

(b)

(c)

(d)
Figure 4. (a): Colour assigned to a vertical slice, displayed in sRGB: the
CC stands out. (b): Standard segmentation of CC into seven sections. (c):
Contrast-enhanced vertical segment. (d): FA (a scalar value), contast en-
hanced.

data by carrying out an Analysis of Variance (ANOVA),
with the null hypothesis that the means in all seven seg-
ments are the same. From Fig. 5(a) we see that the 95%
confidence intervals for the means of the tensor data in
the CC segments overlap substantially, making the origi-
nal data not very dependable for segmentation purposes.
The F-statistic for ANOVA is 22.6; the F-statistic is the
ratio of between-group variance to within-group variance,
with a larger F providing more evidence that the group
means are distinguishable. In comparison, using the FA
also generates overlapping means, as in Fig. 5(b); how-
ever the F-value improves to 29.9. But using colour, F is
best, at 32.5: in Fig. 5(c) we see that at least one colour
component does not overlap, between each segment, thus
facilitating differentiating them. Nevertheless, for colour,
for FA, and for the original data ANOVA reports that one
can at least rule out the null hypothesis, with vanishingly
small probability p-value.

To see how the seven segments look in CIELAB, Fig. 6
shows the {L�, a�, b�} coordinates for the seven CC seg-
ments (coloured using the mean sRGB colour from the CC
in Fig. 4(b)). We can see a substantial change in CIELAB
between segments.

5. Conclusions
We have outlined a new colouring scheme for DT data,

based on mapping a correct 6D tensor metric into percep-
tual colour coordinates in a reasonable way, guided by the
ICA source separation mechanism.

Future work will apply the method proposed here, cap-
turing ICA information in a colour vector, to the task of
tractography. Since this task amounts to a type of 3D
segmentation, we will apply the Mean Shift approach to
segmentation to the colour data developed here.
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Figure 5. Means in the seven segments of the CC: (a): Original DT data;
(b): FA data from Fig. 4(d); (c): Color data from Fig. 4(c).
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