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Abstract
The illumination-invariant image is a useful intrinsic feature

latent in colour image data. The idea in forming an illumination
invariant is to postprocess input image data by forming a loga-
rithm of a set of chromaticity coordinates, and then project the re-
sulting 2-dimensional data in a direction orthogonal to a special
direction, characteristic of each camera, that best describes the
effect of lighting change. Lighting change is approximately sim-
ply a straight line in the log-chromaticity domain; thus, forming
a greyscale projection orthogonal to this line generates an image
which is approximately independent of the illuminant, at every
pixel. One application has been to effectively remove shadows
from images. But a problem, addressed here, is that the direction
in which to project is camera-dependent. Moreover, preprocess-
ing with a spectral sharpening transform to linearly transform the
sensor curves to more narrowband ones greatly improves shadow
attenuation, but sharpening is also camera-dependent and we
may not have information on the camera. So here we take a sim-
pler approach and assume that every input image consists of data
in the standardized sRGB colour space. Previously, this assump-
tion has led to the suggestion that the built-in mapping of sRGB to
XYZ tristimulus values could be used by going on to sharpen the
resulting XYZ and then seeking for an invariant. Instead, here we
sharpen the sRGB directly and show that performance is substan-
tially improved this way. This approach leads to a standardized
sharpening matrix for any input image and a fixed projection an-
gle as well. Results are shown to be satisfactory, without any
knowledge of camera characteristics.

1. Introduction
The illumination invariant image is formed from image data

by taking the logarithm of band-ratio chromaticity colour coor-
dinates, and then projecting in a certain direction [1]. The input
colour data is 3-dimensional RGB, and the chromaticity is effec-
tively 2D colour. Projecting in a 2-space direction generates a 1D,
greyscale image. If the direction is chosen with care, the resulting
greyscale image is quite independent of the lighting at each pixel,
therefore forming an illumination invariant. The cleverness of the
invariant is that it is formed at each pixel independently, with no
global image processing required.

The special direction for projection is that which is orthog-
onal to the direction that is followed along, in the 2-space, as the
lighting changes (within a simplified model). Since lighting is
thus removed, as a particular case shadows are also removed, or
at least greatly attenuated [2, 3].

Since in fact we are projecting onto a line through the origin
in a colour 2-space, we need not think of the result of projection
as merely a 1D, greyscale image: we do have as well, after all,
a 2D coordinate position on that line, so we could state the pro-
jection answer as a 2D chromaticity [4]. Projection removes the
lighting, but this can then be partially added back, by shifting the

chromaticity projection line so as to make the chromaticity for
bright pixels match that for bright pixels in the input image. So
projection does not have to completely remove colour.

Once we indeed have an invariant image, we can go on to
remove shadows by comparing edges in the original to edges in
the invariant image. Removing or blending edges where these two
edge maps disagree provides a strategy for re-integrating the edge
map back into a full-colour, shadowless RGB image [2, 5].

While the idea for finding the invariant is fairly simple, car-
rying out finding the proper direction in which to project is not
necessarily as straightforward. In [2], the camera itself was cali-
brated, in this invariant image sense, by utilizing a set of images
of a colour target, under different illuminants, to find the best 2D
direction characterizing lighting change. In [3], evidence in the
image itself was used to discover the correct direction orthogo-
nal to the lighting change direction. There, it was argued that
such a projection direction is best described as that leading to a
minimum-entropy distribution in greyscale values.

Here, we would like to argue that it is possible to do a good
enough job in finding the invariant image by simply assuming
the input data to live in the standardized sRGB colour space and
sharpening that space. In this way, we are not tied to finding the
invariant projection for a particular camera, or using the data in
a particular image, and can develop a standardized workflow that
can be applied directly to any input image. Of course, deriving
an invariant that is sensor- or image-adaptive instead, as origi-
nally conceived, will likely work better than a one-size-fits-all ap-
proach, but here we show that results are indeed adequate using an
approach applying the same transform to any image – e.g., shad-
ows are principally attenuated, no matter what the input image.

Previously, a similar approach was tried by recognizing that
the sRGB standard [6] contains not only a mapping from nonlin-
ear to linearized colour values, but also a relationship from the
sRGB gamut to corresponding XYZ values via matrixing. Thus
it was proposed [7] that input images could be assumed to be in
nonlinear sRGB colour space, linearized to linear-sRGB, and then
transformed to XYZ. Then, in XYZ, the XYZ curves themselves
could be sharpened. The results for shadow removal were indeed
better than simply removing gamma-correction. However, the in-
variant direction still was found using the entropy method of [3],
so a fully standardized method was not developed.

We would argue, moreover, that going from linear-sRGB
to XYZ is in itself counterintuitive, in that the sRGB colour-
matching functions are close to sharpened colour-matching curves
already [8], so that going over to XYZ curves is a kind of broad-
ening transform. Following this with a further sharpening of the
XYZ curves is not as direct as simply sharpening the sRGBs
themselves, as proposed here. And, we show that the new idea, of
sharpening the sRGB data, provides better performance for pro-
ducing an illumination invariant.
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Moreover, once we decide that all data is sRGB, and we pro-
vide a sharpening transform for sRGB, we can in fact find the
best projection direction simply using synthetic data and then ap-
ply the same transform and projection once and for all to any input
image. We show that this simple strategy produces usable results,
within the application of shadow removal.

In §2 we compare the strategy of sharpening XYZ data, for
input nonlinear-sRGB images, to the new approach of sharpen-
ing the sRGB data directly, and show that a better invariant (more
invariant to lighting change) arises from the latter approach. In
§3.1 we extract the illumination invariant from measured, nonlin-
ear input data for images of the Macbeth chart across 105 different
illumination environments. Applying the standardized illumina-
tion invariant extraction scheme presented here produces images
much more independent of lighting change. And in §3.2 we apply
the new method to the problem of reducing or removing shadows
from imagery, by generating an invariant image from input colour
images, making use of the new standardized method.

2. Sharpening XYZ versus Sharpening sRGB

Sharpening XYZ
The first approach to a standardized sharpening and pro-

jection scheme was to sharpen XYZ values arising from input
nonlinear-sRGB images [7]. Here we propose re-examining this
approach, but here we sharpen colour-patch data directly rather
than sharpen the XYZ colour-matching curves — that is, we take a
maximum-prescience approach rather than a maximum-ignorance
one. But what colour data should we utilize? As a set of fairly
generic inputs, suppose we simply use the 24 patches of a Mac-
beth ColorChecker [9], with synthetic values for tristimulus val-
ues under Planckian lights [10]. However, here we are aiming at
the idea of starting with sRGB data; therefore we first transform
the resulting XYZ values back to linear-sRGB colour space, and
thence back to XYZ again. The thought here is that the transform
from XYZ to sRGB [6] may involve clipping to the range [0,1],
and we wish to take that into account.

Therefore we generate a set of synthetic images of the Mac-
beth chart, formed under 9 Planckian lights for temperatures
T =2,500◦–10,500◦ in 1,000◦ intervals. We define the synthetic
data in XYZ coordinates rather than in sRGB so that we have
meaning and generality for the data. Taking the resulting XYZ
triples to linear-sRGB colour space does turn out to involve some
clipping. Then we take the data back to XYZ space.

Finally, we wish to consider an invariant in a colour 2-space,
and here we make use of log-chromaticities formed as the loga-
rithm of ratios of the XYZ to their geometric mean [11]:

log xk = log
[
{X, Y, Z}/(X · Y · Z)1/3

]
(1)

This generates 3-vector quantities but, in fact, in the log space ev-
ery such 3-vector lies in the plane orthogonal to the unit vector
u = (1/

√
3)(1, 1, 1)T ; thus only two coordinates are indepen-

dent. We can rotate into that plane (cf. [4]) by forming a 2-vector
χ by making use of the 2 × 3 rotation matrix U T equal to the
orthogonal matrix factorizing the projector onto the subspace per-
pendicular to u :

P⊥ = I − u u T ,
P⊥ = U U T , U is 3 × 2
χ = U T log x

(2)

A plot of the resulting 2D colour coordinates in Fig. 1(a) shows
that, rather than forming straight lines as expected, we see some
curvature in the plots as lighting changes. If we center the data by
subtracting the mean χ vector for each colour patch, we would
like to see as close as possible to a single straight line through
the origin, for the purposes of forming a lighting invariant: a sin-
gle straight line would indicate that, in Fig. 1(a) we could simply
project in a direction orthogonal to the direction of that line and
effectively eliminate the influence of lighting on the feature. I.e.,
we could generate a 1D greyscale illumination invariant.

However, in Fig. 1(b), for mean-subtracted data, we instead
see that the data is fairly spread out. We can discount the effect
of outliers to a degree by finding the best slope using a robust
statistical method [12], but still, we find the data has a correla-
tion coefficient R of only 0.605 — not an excellent indicator of
straight-line behaviour.

Therefore we consider sharpening the colour-patch data
[13], in order to make the illumination-invariant image formation
model [1] more applicable, since the theory behind the model re-
quires quite sharp camera sensors. We thus make use of the data-
based sharpening method [13] to determine a sharpening matrix
T ; we choose the synthesized data under the most red and the
most blue lights, and find the best least-squares matrix transform-
ing one into the other. The sharpening matrix T is the set of
eigenvectors of the least-squares transform. Fig. 1(c) shows that
sharpening does indeed straighten out the log-chromaticity plots;
for mean-subtracted data in Fig. 1(d), we now find a correlation
coefficient R=0.764, a much improved value.

Sharpening sRGB
The objective of this paper is to determine whether sharp-

ening sRGB values themselves can produce a better illumination
invariant than can sharpening XYZ values. Therefore now we
compare how sRGB log-chromaticities fare under lighting change
— can we sharpen analogues to eq. (1) constructed from linear-
sRGB values and arrive at a better invariant?

Firstly, we examine how sRGB itself does in forming an in-
variant. We plot linear-sRGB for the synthetic images under 9
different lights, with results shown in Fig. 2(a). We see that sRGB
coordinates do indeed form straighter lines than do XYZ coordi-
nates (in Fig. 1(a)). For mean-subtracted values, in Fig. 2(b), we
find a correlation coefficient R=0.837, already better than sharp-
ened XYZ notwithstanding outliers created by clipped values.
(We use a generalized logarithm [7], not a logarithm, to avoid
the log of zero.)

Data-based sharpening in this case actually makes the corre-
lation coefficient worse: Table 1 shows that applying sharpening
results in R=0.630 (the mean-subtracted data is somewhat spread
out).

However, if we make use of a white-point preserving data-
based sharpening [14], then R is improved: R=0.877, the highest
value found so far.

Optimized sRGB Sharpening Transform
The result above is encouraging, since it indicates that sharp-

ening sRGB does indeed produce the best illumination invariant,
the result we argue for in this paper. However, while the result is
good, it could be better.

Sensor sharpening simply has the objective of concentrating
energy in each sensor in its associated colour band. However,
here we have a specific objective: producing the best invariant
coordinate. Therefore we adopt the optimization strategy in [15],

15th Color Imaging Conference Final Program and Proceedings 37



−0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

1

1.5

2

χ
1

χ 2

(a)

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

χ
1

χ 2

(b)

−2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

χ
1

χ 2

(c)

−3 −2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

χ
1

χ 2

(d)
Figure 1. Log-chromaticity XYZ coordinates for Macbeth patches, as light

changes. (a): χ vectors; (b): Mean-subtracted values: best (robust) direction

in green, orthogonal direction in red, R=0.605. Black lines joining data points

are for each colour patch, as lighting changes. (c): Sharpened XYZ; (d):

Sharpened, mean-subtracted: R=0.764.
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Figure 2. Log-chromaticity sRGB coordinates for Macbeth patches, as

light changes. (a): χ vectors; (b): Mean-subtracted values: R=0.837. (c):

Sharpened sRGB; (d): Sharpened, mean-subtracted: R=0.877.
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which aims specifically at finding the best sensor transform T that
minimizes the spread of the lines plotted in a mean-subtracted log-
chromaticity space. The optimization also insists on non-negative
results, after applying the colour transform T .

Applied to the sRGB data, we find the following transform

T =

(
0.9968 0.0228 0.0015

−0.0071 0.9933 0.0146
0.0103 −0.0161 0.9839

)
(3)

which is post-multipled times row vectors. The sRGB data forms
quite straight lines, now, in the transformed space, as shown in
Fig. 3(a).
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Figure 3. Optimized log-chromaticity sRGB coordinates. (a): χ vectors;

(b): Mean-subtracted values: R=0.920.

For the mean-subtracted data in Fig. 3(b), we now find the
improved correlation coefficient value: 0.920. Thus we suggest
adopting the linear-sRGB colour space transform matrix (3) as a
standard colour transform. The direction for orthogonal projec-
tion found by a robust regression, shown in red in Fig. 3(b), is
given by the 2D vector e ⊥ orthogonal to the lighting-change di-
rection:

e ⊥ = (0.9326, −0.3609)T (4)

Thus, overall, we argue here that as a standardized work-
flow for producing an illumination invariant image from an input
colour image we proceed as follows:

Scheme R
XYZ 0.605
XYZ# 0.764
sRGB 0.837
sRGB# 0.630
sRGB#

WPP 0.877
sRGBT OPT 0.920

Table 1: Correlation coefficient values R for projection of
mean-subtracted log-chromaticity, formed according to the
method in columns “Scheme”: from XYZ coordinates, and
from sharpened XYZ; from sRGB, from sharpened sRGB, and
from white-point preserving sharpened sRGB; and finally us-
ing an optimized tranform T from eq.(3) on sRGB coordinates.

Transform input image nonlinear sRGB to linear-sRGB.
Transform to sharpened colour space. I.e., if linear sRGB

values are ρ , then ρ # = T ρ , where T is given by (3).
Form 2D log-chromaticity coordinates χ as in eq. (2) for

sRGB values.
I.e., form 2-vectors r via
r = log ρ # − (1/3)

∑3

k=1
log ρ#

k ,
χ = UT r , using sharpened ρ # values.

E.g., use U =

⎛
⎝ 1/

√
2 1/

√
6

1/
√

2 1/
√

6

0 −2/
√

6

⎞
⎠

Project onto line perpendicular to lighting-change direction,
using vector e ⊥ in (4).

Form 2D-colour from projected point by rotating back
to a 3-vector using 3 × 2 matrix U .

Exponentiate to go back to non-log coordinates.
Move to chromaticity in an L1 norm by dividing

by (R + G + B).

The above algorithm generates 3D colour, but only from val-
ues projected onto the projection line, so effectively 2D. Nonethe-
less, the 2D colour information can still be useful [4].

In the next section, we apply this algorithm to empirical im-
ages of the Macbeth chart, situated in various illumination envi-
ronments, and show the efficacy of such a generic sharpening plus
projection scheme.

3. Experiments
3.1 Invariant from Measured Chart Data

A set of various images that include a Macbeth chart in the
scene were acquired under 105 different lighting conditions. 1

Fig. 4(a,b) shows two if these images, which we treat as nonlinear-
sRGB. Forming the mean-subtracted log-chromaticities, we find
that without any colour space transform the correlation coefficient
is only R=0.775. Thus we would not expect to achieve a reliable
illumination invariant without transforming the colour space.

Now if we apply the algorithm given above, applying trans-
form T , we then achieve an R value of R=0.809. I.e., while an
optimization applied to this data would do better, the pre-defined
transform derived from synthetic data already does quite well. In

1These images are due to Prof. Graham Finlayson. The images are
nonlinear; the camera used was a Nikon D70.
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Figure 4. Log-chromaticity sRGB coordinates for measured empirical Mac-

beth patches, for 105 different lighting conditions. (a,b): Samples of images.

(c): Mean-subtracted values: R=0.775. (d): Sharpened, mean-subtracted:

R=0.809.

Fig. 4(d), we show the pre-determined projection line as a solid
line, and the best-fit one for the actual data in a dashed line — the
two are not far apart.

In the next section, we apply the standardized algorithm to
ordinary images, with a view to testing the efficacy with respect
to shadow removal in an invariant image.

3.2 Shadow Attenuation
Here we apply the standardized algorithm to a set of images

acquired under a variety of illumination environments. We form
the 2D chromaticity, both without and then with invariant im-
age processing applied as described above. If the standardized
approach to extraction of an illumination invariant does indeed
work, we expect shadows to be attenuated, compared to in the
original chromaticity image.

Fig. 5 shows several images that contain shadows. The ef-
fect in every case, over the cameras utilized, is to remove or at
least reduce the effect of shadows. This is shown by displaying
the chromaticity images with their edge-map overlaid: edges for
shadows appear in the original, but not in the invariant version of
the chromaticity. This can then be used to go on to remove shad-
ows from images (see [16] and [5] for approaches to this task).

5. Conclusions
We have outlined a simple, standardized method to gener-

ate a reasonable illumination invariant, from input colour images.
The method is based on the idea of simply treating every input im-
age as inhabiting sRGB colour space, and transforming that space.
The transformation is found by optimizing the lighting invariance
for generic, synthetic data when taken to log-chromaticity space
and projected into a 1D invariant. The invariant image itself can
be understood as a 2D-colour chromaticity image. Experiments
show that applied the standardized invariant extraction method
generates reasonable independence to lighting, across conditions
and cameras. The approach set out here might be usefully em-
ployed in place of a more rigorous, camera- and image-dependent
method for extraction of an illumination invariant.
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Figure 5. Input colour images, their chromaticity, and the chromaticity images for an extracted illumination invariant. Here, the Mean-Shift algorithm has been

applied to generate a cleaner image, and edge-detection overlaid — the illumination invariant has fewer edges on shadow boundaries. Cameras used were an

HP 912 and a Nikon D70.
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