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Abstract 
    Thin-plate spline interpolation is used to interpolate the 
color of the incident scene illumination from an image of the 
scene. The algorithm can be used to provide color constancy 
under changing illumination conditions, and automatic white 
balancing for digital cameras.  Thin-plate splines interpolate 
over a non-uniformly sampled input space, which in this case is 
a set of training images and associated illumination 
chromaticities.  Tests of the thin-plate spline method on a large 
set of real images demonstrate that the method estimates the 
color of the incident illumination quite accurately. 
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Introduction 
    A new approach to illumination estimation for color 
constancy and automatic white balancing is developed based on 
the technique of thin-plate spline interpolation. We describe the 
illumination in terms of its chromaticity components r, g which 
can be viewed as a functions of the image I ; namely,   r = fr(I) 
and g = fg(I). The problem of illumination estimation becomes 
that of estimating these two functions. In this paper, we treat 
their estimation as a problem of interpolation over a set of 
training images.   
    Interpolation is a common problem and there are many well-
established interpolation methods[1]. The majority of these 
methods, such as bilinear or bi-cubic interpolation, are based on 
interpolation over training data sampled on a uniform grid. 
However, we can not uniformly sample the space of images, so 
interpolation over a non-uniformly sampled space is required.  
Thin-plate spline interpolation is an effective interpolation 
method under these conditions, and has been widely used in the 
context of deforming one image into registration with another. In 
the case of illumination estimation, TPS maps image 
information to the r-chromaticity and g-chromaticity values of 
the illumination. 
 
 
Thin Plate Spline Method 
 
    As is typical of interpolation methods in general, thin-plate 
spline (TPS) interpolation constructs a function that matches a 
given set of data values yi, corresponding to a given set of data 

vectors ],...,[ ,2,1, Diiii XXXX = , in the sense that yi = f( iX ).  

    TPS interpolation was originally designed for 2-dimensional 
image registration[2-5]. In the color context, it has been 
extended TPS to 3 dimensions, and successfully applied  to the 
problem of camera and color display calibration [6]. Compared 
with other methods, TPS has been found to be quite stable and 
accurate in terms of finding a unique solution without having to 

tune a lot of parameters. Here, we extend TPS to n-dimensions 
and apply it to the problem of estimating the chromaticity of a 
scene’s overall incident illumination from an image of that scene. 
Many previous methods [7-9] have used a color histogram as the 
input data; however, for TPS we use image thumbnails as input. 
The thumbnails are 8x8 images created by averaging the 
underlying pixels in the original input image. These thumbnails 
in chromaticity coordinates become input vectors of size 8 x 8 x 
2 =  128.  
    TPS for illumination estimation requires a “training” set of N  
images along with their corresponding illumination chromaticity 
values {(Ii,1,Ii,2,…Ii,128), (ri,gi)}. TPS determines parameters wi 
and aj controlling the two mapping functions fr,  fg, such that 
 

(ri,gi)  = (fr(Ii,1,Ii,2,…Ii,128),  fg(Ii,1,Ii,2,…Ii,128)). 
 
    The mapping function fr, is defined as 
 

)1(log)(

'

||)),...,()',...','((||)',...','(

2

128

1
0

1
128,,1,1282112821

xxxUwhere

Iaa

IIIIIIUwIIIf

jj
j

N

i
iiiir

=

+

+−=

∑

∑

=

=
 

    The function fg is defined similarly. The weights wi control a 
non-linear term, and the aj, control an additional linear term. 
    Each training set pair (an image plus its illumination 
chromaticity) provides 2 equations. For the ith training image we 
have 
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In addition, a smoothness constraint is imposed by minimizing 
the bending energy. In the original TPS formulation [1], the 
bending energy function was defined in 2D. Here we generalize 
it to higher dimensions defined as αi (i= 1..128): 
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where )( rfJ  is the total bending energy described in terms of 

the curvature of rf .   Following [10-12], the energy will be 

minimized when 
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1 This work was done while the author was a PH.D. student at 
Simon Fraser University. 
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For each of fr and fg, we have (N+129) equations in (N+129) 
linear can be uniquely determined using matrix operations. 

Define L, W, K, Q and U as follows: 
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W= [w1 , w2 ,…, wN , a0 ,  a1 , a2, …, a128]
T 

K = [X1 , X2 , … XN ,0 ,0 ,0,….0]T 
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    where Uij = U(||(Ii1…Ii128 )- (Ij1…Ij128)||) and 0 is the 129x129 
matrix of zeroes.  
    The (N+129) equations can then be written K=LW , and the 
solution can be obtained as W = L-1K. 
 
Experiments 
    We implemented the TPS illumination-estimation method in 
Matlab and conducted experiments to compare its performance 
to that of other illumination-estimations methods.  
    Several different error measures are used to evaluate 
performance. For each image, the distance between the 
measured actual illumination chromaticity (ra,ga) and that 
estimated by an algorithm (re,ge) is calculated as: 

)5()()( 22
eaeadisti ggrrE −+−=−         

    For a test set of N  images we report the root mean square 
(RMS), mean, and median distance [13] . The 
 RMS is defined in the standard way as: 

 

)6(
1

1

2
∑
=

−=
N

i
distidist E

N
RMS  

   Given illumination chromaticity r and g, the other component 
can be obtained as b = 1 – r – g . This allows us to compute the 
angular error between two 3-dimensonal chromaticity vectors as:  
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    As with the distance measure, we also compute the RMS, 
mean, and median angular error over the test set of images.  
    To evaluate whether there is a significant difference in the 
performance of two competing methods, the Wilcoxon signed-
rank is applied [13]. The threshold for accepting or rejecting the 
null hypothesis is set to 0.01.  

    The first experiment is from Barnard’s calibrated 321 SONY 
images [14]. We evaluate the illumination error using the leave-
one-out cross-validation procedure [14]. In the leave-one-out 
procedure, one image is selected for testing, and the remaining 
320 images are used for training in order to determine the 
required parameters. This is repeated 321 times, with a different 
image left out each time.  
    The results with corresponding results for the Shades of Gray 
(SoG)[15], Support Vector Regression (SVR)[7], Max RGB 
(MAX)[16], and Grayworld (GW)[17] methods are listed in the 
Table 1 and 2.  

We next consider Cardei’s [20] set of 900 uncalibrated 
images taken using a variety of different digital cameras 
manufactured by Kodak, Olympus, HP, Fuji Polaroid, PDC, 
Canon, Ricoh and Toshiba. The illumination RGB values for 
these images were measured from a gray card placed in each 
scene. Leave-one-out experiments are used once again. The 
results are shown in tables 3 and 4.  
    The final test is based on the 7,661 real images extracted from 
over 2 hours of digital video acquired with a SONY VX-2000. 
Ciurea et. al. [18] set up a special camera with a matte gray ball 
attached to it. This was made to appear at a fixed location near 
the right-bottom corner of each video frame. The average 
chromaticity value of the pixels in the brightest region is 
assumed to reflect the RGB of the true scene illumination. To 
ensure that the grayball has no effect on the results, all images 
were cropped on the right to remove the grayball. The remaining 
images are 240 by 240 pixels. 
    The whole image dataset includes a wide variety of indoor 
and outdoor scenes, including many with people in them. Since 
neighboring images in the database tend to be related, we 
partitioned the database into two independent sets based on 
geographical location. Subset A includes 3,581 images, and 
subset B includes 4080. Subset A contains images from the 
Apache Trail, Burnaby Mountain, Camelback Mountain, CIC 
2002 and Deer Lake. Subset B contains images from completely 
different locations including False Creek, Granville Island 
Market, Marine Drive, Metrotown shopping center, Scottsdale, 
Simon Fraser University and Whiteclyff Park. We then used 
Subset A for training and B for testing and vice versa. The 
results are listed in Table 5. Tables 6 and 7 give the 
corresponding Wilcoxon sign test results. The combined errors 
and corresponding Wilcoxon sign test result from both tests are 
shown in Table 8 and Table 9.  

 
Conclusion 
    The problem of estimating the chromaticity of the overall 
scene illumination is formulated in terms of interpolation over a 
non-uniformly sampled data set. The chromaticity is viewed as a 
function of the image and the set of training images is non-
uniformly spaced. Thin-plate spline interpolation is an excellent 
interpolation technique for these conditions and has been shown 
to work well for illumination estimation in particular. TPS 
calculates its result based on a weighted combination of the 
entire set of training data. Hence, for efficiency it is important to 
keep that set as small as possible, and how best to prune the 
training set is a direction for future research. Overall, the 
experiments on real images show the accuracy of TPS 
illumination estimation to be very good. 
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Method SVR Dimension/ 
Norm Power 

Median 
Angle 

Max 
Angle 

RMS 
Angle 

Median 
Dist(×102) 

RMS Dist 
(×102) 

Max Dist 
(×102) 

TPS  0.64 14.43 2.10 0.53 1.55 10.42 
2D 4.65 22.99 10.06 3.41 7.5 16.41 

SVR 
3D 2.17 24.66 8.069 3.07 6.3 16.03 

SoG 6 3.97 28.70 9.027 2.83 6.21 19.77 
Max RGB  6.44 36.24 12.28 4.46 8.25 25.01 

GW  7.04 37.31 13.58 5.68 11.12 35.38 
Table 1 Comparison of TPS to 2D and 3D SVR performance, SoG, Max RGB, Grayworld performance.  The results involve real-data 
training and testing on the 321 SONY images. Errors are based on leave-one-out cross-validation, and are reported in terms of both the 
RMS angular chromaticity and distance error measures.  

 
 TPS 2D SVR  3D SVR  SoG 

(norm power = 6) 
Max 
RGB 

GW 

TPS  + + + + + 
2D SVR  -  - = + + 
3D SVR  - +  + + + 
SoG (norm power = 6) - = -  + + 
Max RGB - - - -  - 
GW - - - - +  
Table 2 Comparison of the different algorithms via the Wilcoxon signed-rank test. A ‘+’ means the algorithm listed in the 
corresponding  row is better than the one in corresponding column. A ‘-‘ indicates the opposite, and an ‘=’ indicates that the 
performance of the respective algorithms is statistically equivalent. 
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Method Dimension/Norm 

Power 
Median 
Angle 

RMS 
Angle 

Max 
Angle 

Median 
Dist 
(×102) 

Mean 
Dist 
(×102) 

RMS 
Dist 
(×102) 

Max 
Dist 
(×102) 

TPS(rg) 2 2.26 3.86 22.23 1.72 2.22 2.92 18.29 
2D 2.40 4.47 20.43 1.74 2.40 3.27 18.40 SVR (no 

resampling) 3D 2.02 3.94 17.46 1.40 2.09 2.94 15.42 
SVR(with 

resampling) 3D 2.07 3.91 10.57 1.55 2.03 2.72 6.42 

C-by-C 2D - - - - 2.92 3.89 - 
NN 2D - - - - 2.26 2.76 - 

SoG 6 3.02 4.99 19.71 2.19 2.96 3.80 15.96 
Max RGB  2.96 6.39 27.16 2.17 3.36 4.75 22.79 

GW  4.34 6.65 31.44 3.17 4.12 5.26 29.99 
Table 3  Comparison of Composition Solution and TPS to that of SVR, Color by Correlation, the Neural Network, SoG, Max RGB, 
Grayworld. The tests are based on leave-one-out cross validation on a database of 900 uncalibrated images.  The entries for C-by-C 
and NN are from [8] (Table 7 page 2385). 

  
 TPS 2D SVR 3D SVR 3D SVR 

(with 
resampling) 

SoG  
(norm 
power = 
6) 

MAX 
RGB 

GW 

TPS  + - - + + + 
2D SVR -  - - + + + 
3D SVR + +  = + + + 
3D SVR (with 
resampling) 

+ + =  + + + 

SoG (norm 
power = 6) 

- - - -  = + 

MAX RGB - - - - =  + 
GW - - - - - -  

Table 4 Evaluation of the performance results from Table 3 using the Wilcoxon signed-rank test. Labeling ‘+’, <’-‘, <’=’ as in the 
caption for Table 2. 

 
 

Angular Degrees Distance(×102) Method Training 
and Test 
Sets 

Median RMS Max Median RMS Max 

TPS 4.52 7.02 34.81 3.37 5.19 25.78 

3D SVR 4.53 6.76 24.55 4.11 5.03 18.62 
SoG (norm = 6)  6.71 8.93 37.01 4.83 6.59 27.99 
MAX RGB 10.33 12.81 27.42 6.99 9.14 21.72 
GW 

Train: 
Subset A 

 
Test: 

Subset B 6.83 9.66 43.84 5.25 7.82 45.09 
TPS 

4.58 6.83 27.62 3.31 4.99 29.37 

3D SVR  5.33 7.32 24.80 3.91 5.29 16.68 
SoG (norm = 6) 6.71 8.92 37.01 4.83 6.59 27.99 
MAX RGB 9.23 11.32 26.76 6.76 8.39 21.55 
GW 

Train: 
Subset B 

 
Test: 

Subset A 
7.83 10.66 43.84 6.25 8.81 45.09 

Table 5  Comparison of TPS error to 3D SVR, SoG, Max RGB, and Grayworld. Training is based on all the images in the given 
subset. 

 
Method TPS 3D SVR  SoG (norm power = 6) MAX GW 
TPS  = + + + 
3D SVR  =  + + + 
SoG (norm power = 6) = -  - - 
MAX - - -  - 
GW - - - +  
Table 6 Comparison of the algorithms based on the Wilcoxon signed-rank test on angular error. Training set is Subset A. Test set for 
all methods is Subset B. Labeling ‘+’, ‘-‘, ‘=’ as explained in the caption for Table 2. 
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Method TPS 3D SVR  SoG (norm power = 6) MAX GW 
TPS  = + + + 
3D SVR  =  + + + 
SoG (norm power = 6) - -  + + 
MAX - - -  = 
GW - - - =  
Table 7 Comparison of the algorithms based on the Wilcoxon signed-rank test on angular error. Training set is Subset B. 
Test set for all methods is Subset A. Labeling ‘+’, ‘-‘, ‘=’ as explained in the caption for Table 2. 

 
 
 
 
 
 
 
 
 
 

Table 8 Comparison of TPS error to 3D SVR, SoG, Max RGB, and Grayworld.  The results involve real-data training and testing on 
disjoint sets of 7,661 images from the Ciurea data set.  

 
Method TPS 3D SVR  SoG (norm power = 6) MAX GW 
TPS  = + + + 
3D SVR  =  + + + 
SoG (norm power = 6) - -  - = 
MAX - - +  + 
GW - - = -  
Table 9 Comparison of the performance based on the Wilcoxon signed-rank test. Labeling ‘+’, ‘-‘, ‘=’ as explained in the 
caption for Table 2. 
 

Angular Degrees Distance(×102) Method 
Median RMS Max Median RMS Max 

TPS 4.56 6.93 34.18 3.35 5.09 25.78 
3D SVR 4.91 7.03 24.80 3.62 5.16 18.62 
SoG  6.71 8.93 37.01 4.83 6.59 27.99 
MAX RGB 9.65 12.13 27.42 6.86 8.80 21.72 
GW 6.82 9.66 43.84 5.25 7.82 45.09 
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