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Abstract 
We propose a general solution to the problem of decoding high 
dynamic range (HDR) information stored as a supplement to low 
dynamic range (LDR) images or video.  Each LDR frame is 
paired with a lower resolution HDR version, and these are 
compressed separately using any of the existing methods 
appropriate to the task.  On decode, the low-resolution HDR 
image is upsampled to match the resolution of the LDR version, 
and the high frequencies are transferred from the LDR to the 
HDR frame. The recovery process places no constraints on the 
color space or tone-mapping of the backwards-compatible LDR 
content, and is thus ideally suited to applications such as DVD 
movies that target legacy equipment while building in forward-
compatibility with emerging HDR systems.  A fast and simple 
recovery algorithm is demonstrated, followed by a more 
sophisticated and accurate technique.  Examples are shown on 
computer-generated video frames as well as HDR captured video. 

Background 
Recent work in high dynamic range image encoding has focused 
on “lossy” compression, with a particular emphasis on backwards 
compatibility with existing formats [Spaulding et al. 2003] [Ward 
& Simmons 2004, 2005] [Li et al. 2005] [Mantiuk et al. 2006].  
This is an important trend for the practical adoption of scene-
referred high dynamic range (HDR) digital imagery in a world 
where lossy, output-referred formats such as JPEG and MPEG 
dominate.  The consumer market will not accept HDR formats 
that take 12 times as much space as JPEG and 80 times as much 
space as MPEG, especially if they cannot be displayed with 
standard viewers and players.  Such is the case for the most 
common HDR formats in use today:  Radiance RGBE (.hdr), 
OpenEXR, and TIFF [Reinhard et al. 2005].  Though adoption of 
such lossless formats is taking place in high end tools such as 
Adobe Photoshop™ and systems such as Mac OS X  and 
(hopefully) the next version of Windows, the space requirements 
of lossless HDR will preclude its use in digital photography, 
video, and web applications for the foreseeable future.  Lossy 
HDR encodings that are not backwards-compatible [Mantiuk et al. 
2004] [Xu et al. 2005] will eventually make it to the marketplace, 
but currently offer no practical transition path. 

Methods for backwards-compatible HDR image encoding can be 
divided into two categories: reversible tone-mapping [Li et al. 
2005] and supplemental images [Spaulding et al. 2003] [Ward & 
Simmons 2004, 2005] [Mantiuk et al. 2006].  Reversible tone-
mapping presents a challenge to efficient encoding, because JPEG 
and MPEG tend to degrade information that is important for 
proper reconstruction.  Thus, compression performance is much 
worse than with supplemental methods.  Supplemental methods 
encode additional image data to recover the HDR original from 

the recorded low dynamic range (LDR) information, storing the 
extra data in an auxiliary stream that is ignored by naïve viewers 
and players.  The key is to minimize the size of this auxiliary 
stream, and existing methods add between 5% and 30% to the 
LDR image size, depending on the method and settings. 

The problem with supplemental encoding schemes is their 
inherent complexity.  Kodak’s ERI format [Spaulding et al. 2003] 
uses a residual image with sophisticated color and bit 
manipulations to minimize the size of the auxiliary stream, 
achieving good compression but only modest gains in dynamic 
range.   The backwards-compatible HDR version of MPEG 
introduced by Mantiuk et al. [2006] follows a similar approach, 
with a residual image storing the difference between a predictor 
function on the LDR data and an perceptual HDR color space.  In 
both methods, the residual tends to be small and noise-like where 
the LDR image is within its output-referred gamut, but jumps 
abruptly wherever the LDR image saturates at the top end.  This 
challenges standard lossy image compression techniques, which 
must be tailored to encode only the perceptually important 
information without introducing false contours at the gamut 
boundaries.  The different bit sizes between the LDR and HDR 
data pose additional difficulties during encoding and decoding, 
and care must be taken not to introduce new quantization errors in 
the process.  To avoid these complications, the JPEG-HDR 
encoding of Ward & Simmons [2004, 2005] employs a ratio 
image in place of a residual, which can be multiplied against the 
decompressed LDR image to recover the HDR original.  This 
simplifies the process by allowing a single 8-bit log channel to 
store the ratio between HDR and LDR pixels, but complexities 
creep back in when the ratio image is downsampled to reduce the 
size of the auxiliary stream.  With ratio image downsampling, the 
LDR image must either be “precorrected” against lost resolution, 
or “postcorrected” using a resolution enhancement technique.  
Also, the LDR image must encode all the necessary color 
information, since the ratio image is only for the luminance 
channel.  This places important restrictions on the tone-mapping 
operator and color space of the LDR data.  Such restrictions are 
avoided in the method of Mantiuk et al. [2006], which encodes 
color information as well as HDR luminance in its residual image. 

The method we propose for backwards-compatible encoding of 
HDR imagery is inspired by previous work and motivated by the 
following observations: 

• In today’s applications, the LDR data is more important 
than the HDR data, and should not be compromised. 

• HDR imagery takes longer to decompress because 
hardware and software are tailored to 8-bit streams. 

• Both of these conditions will change in the next 5 years. 
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The main reason that no one has implemented the obvious 
solution of storing a full-blown HDR image in an auxiliary stream 
is that it would more than double the data size, incorporating 
largely redundant information.  However, storing a low-resolution 
version of the HDR original has a number of advantages relative 
to our three observations.  First, it would not affect the LDR data 
in any way.  Second, it would decompress quickly because most 
algorithms are proportional to the number of pixels – using  the 
resolution in each dimension would speed decompression by a 
factor of 16.  Third, as more applications come to rely on HDR 
imagery and the associated hardware and software get faster, the 
resolution of the auxiliary stream can be increased over time, 
eventually reversing the roles and importance of the LDR and 
HDR data streams. 

This is the essence of our proposal:  along with the conventional 
LDR image stream (still image or video sequence), we store a 
corresponding HDR image stream at a reduced resolution.  No 
special preparation is made on either stream, and no restrictions 
are placed on the color space or tone-mapping of the LDR data.  
Storing an HDR image with every LDR image may seem 
redundant, but only the low frequency information is repeated, 
and from this we can derive a correlation to better recover the 
high frequencies; so it is not redundant, but necessary.  We retain 
the nicer features of the supplemental encoding methods, with 
none of the complexity – at least none on the encoding side.  
Decoding is another matter, and the subject of this paper. 

We start by describing a basic recovery method that is fast but 
depends on a global tone-mapping operator, then describe a more 
advanced method that estimates the local tone-mapping response 
automatically.  In our results section,  we evaluate the 
performance of our two algorithms on a variety of source images 
and video, both synthetic and captured, and mapped to different 
color spaces using different tone-mapping operators.  We 
conclude with some final observations and suggestions for future 
work. 

 
Figure 1.  Tone curve inversion from 8-bit/channel original, showing 

quantization artifacts in bright region. 

Method 
Our decoder is given two versions of our image, one that is high 
resolution but low dynamic range, and one that is low resolution 
but high dynamic range.  From these, we wish to derive an image 
that is high resolution and high dynamic range.  If a global tone-
mapping operator were used to generate the LDR image, we could 
try inverting this mapping to arrive at an HDR version, ignoring 
the low-resolution HDR information provided.  However, we 
would run out of color resolution in places where the image 
values were clipped (out of gamut) or the tone curve underwent a 
large degree of compression.  Such a result is shown in Figure 1.  
The sky region surrounding the sun shows quantization artifacts 
as a result of the expansion of LDR data.  Clearly, we need the 
HDR data to supplement our results where the LDR image is 
inadequate. 

Basic Method 
Since we have a low resolution version of our HDR image, we 
can take a different approach.  Rather than inverting the tone 
curve, we can take the high frequency data above the quantization 
threshold from the LDR image to augment the low frequency 
information in the HDR image.  Specifically, we: 

1. Convert our LDR image color space to approximately match 
the primaries of the HDR data. 

2. Extract high frequencies from the LDR image between HDR 
and LDR image resolutions and apply quantization threshold. 

3. Upsample the HDR image to LDR resolution and apply the 
high frequencies from Step 2. 

 
The high frequency ratio image can be computed using a rational 
convolution filter, or with equal efficiency via a downsampling-
upsampling-divide process: 

A. Downsample the image to lower resolution limit. 
B. Upsample again to original resolution. 
C. Divide the original image by resampled image from Step B. 
 
This results in a scaling image whose pixels have an average 
value of 1.0, which can be multiplied by an upsampled image to 
recover the missing high frequencies.  It is critical that the 
upsampling method not introduce spurious high frequencies, 
therefore bilinear interpolation is preferred over the more usual 
bicubic basis in Step B.  (We employed a separated Gaussian 
kernel with a radius of 0.6 pixels in a square footprint of 5x5 
pixels for downsampling.)  Figure 2 shows a high frequency 
image before and after a threshold of 1.5 quantization steps is 
applied. 

If we can invert our tone-mapping curve prior to Step 1 above, our 
results will be fairly accurate because we only take high 
frequency edge information from the LDR version, avoiding the 
quantization artifacts that were showing up in the smooth gradient 
regions.  Figure 3 shows the comparison results, recovered from a 
480x640 pixel LDR and a 120x160 HDR image. 

Unfortunately, we do not always know the tone-mapping that was 
applied to arrive at the LDR image, and even when we do, it may 
be too difficult or too expensive to invert, leaving us with 
inaccuracies in our high frequency data.  Globally, our recovered 
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images will look about right, but details may be softened or lost, 
as shown in Figure 4.  In general, tone-mapping operators may be 
globally or locally determined, and may preserve visibility over 
the entire image or may allow some regions to saturate to black or 
to white.  In saturated regions, we must fall back on the low 
frequency information in our HDR image.  This is acceptable in 
most cases, as this information was selected out of the LDR 
version by the content creators. 

  
 

 
Figure 2.  High frequency image before and after quantization threshold is 

applied. 

Advanced Method 
The basic method just described is very similar to the 
“postcorrection” technique introduced by Ward & Simmons 
[2004], which is known to be a crude approximation due to  its 
ignorance of the tone-mapping function.  When the LDR tone-
mapping is complex or unknown, we still wish to make the best 
use of high frequencies possible.  To accomplish this, we need to 
approximate the impulse response in the LDR data, which is the 
important part of the tone-mapping for our purposes.  Because the 
tone-mapping operator can vary over the image, we need an 
approximation of the impulse function that is also allowed to vary.  
But how do we derive such an approximation?  We need to relate 
our LDR and HDR data, but we cannot compare the frequencies 
we wish to recover, since they are missing from our HDR image.  
So, we settle for the closest information available – the top 
frequencies in the lower resolution image, assuming the impulse 
response does not change dramatically from one band to the next.1   

                                                
1 This assumption may be violated in tone-mapping operators that 
incorporate a sharpening stage.  In such cases, we can either undo 

 
Figure 3.  Basic method of recovering high frequencies using a priori 

knowledge of the tone-mapping function. 

 
Figure 4.  Basic method without knowledge of tone-mapping curve, showing 

loss of detail relative to Figure 3. 

The steps are listed below: 

1. Convert our LDR image to match the color space of the HDR 
image, ISR.  Call this ISOR. 

2. Reduce to the resolution of ISOR to match that of ISR.  Call 
this I SOR. 

3. Extract high frequencies for grayscale versions of ISR and 
I SOR using a bandwidth equal to the resolution difference 
between ISR and ISOR. 

4. Compute a spatially varying impulse response function 
between the I SOR upper band image and the ISR upper band 
image.  (Estimating the impulse response is explained in the 
following section.) 

5. Compute the highest frequencies of full-resolution image 
ISOR and apply the impulse response from Step 4 to recover 
the HDR high frequencies. 

6. Upsample ISR to match the full LDR image resolution. 
7. Multiply high frequency data from Step 5 to get our full-

resolution HDR output. 

                                                                              
the sharpening filter prior to recovery or accept that our final 
HDR output will exhibit a similarly sharpened result. 
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Applying our more advanced method to the same tone-mapped 
image as before, we see improved sharpness in the unsaturated 
regions of Figure 5, based on the same input used to generate 
Figure 4.  The additional high frequency and mapping 
calculations increase the processing time by a factor of 4, from 
0.45 to 1.8 seconds on a 1.5 GHz G4 processor, with both 
calculations proportional to the number of pixels. 

 
Figure 5.  Advanced method estimates the high frequency impulse response 

over the image, obtaining a sharp result without assumptions about the tone-

mapping operator. 

Figure 6 shows a comparison between the simple method and the 
advanced method on a 2704x4064 LDR image mapped using 
Durand & Dorsey’s bilateral filter [2002], paired with a 676x1016 
HDR version.  The blue inset shows the red area recovered using 
the simple method without knowledge of the TMO.  The green 
inset shows the same area mapped using the advanced method to 
estimate the TMO.  Although neither reconstruction is perfect, the 
advanced method retains greater sharpness, at the expense of 
some over-shooting, visible as slight discolorations at high 
contrast edges.  For comparison, the white inset shows the HDR 
data upsampled with a bicubic filter on the left, and the full-
resolution original on the right.  (Insets were tone-mapped using a 
histogram operator [Larson et al. 1997].) 

Estimating the Impulse Response Function 
In order to correctly map the high frequencies in the tone-mapped 
LDR image into the HDR domain, we need to estimate the local 
impulse response.  We start by assuming that the impulse 
response function is monotonically increasing, at least locally.  
This is a reasonable assumption for any tone-mapping operator, 
since a decreasing impulse response would imply that larger 
gradients in the original yield smaller gradients in the tone-
mapped image, which would show up as edges with reversed 
contrast.  Even with this assumption, it is difficult to estimate a 
continuously changing function, so we further assume that the 
function is constant within small local regions of the image.  In 
our implementation, we use overlapping blocks of roughly 64x64 
pixels in the subsampled HDR input, regardless of the input image 
resolution.  We found this to be a reasonable size to obtain a 
sampling of the impulse response. 

 
Figure 6.  An image of the Stanford Memorial Church mapped with a bilateral 

filter, and recovered using the simple and advanced methods from a 4x 

downsampled HDR version.  (Image courtesy Chris Cox of Adobe Systems.) 

Within each block, we put the luminance (gray) values from the 
LDR upper band image in one 4096-entry data array 
corresponding to 64x64 pixels, and the luminance values from the 
HDR upper band image in a second data array.  We independently 
sort the two arrays, then extract the input-output pairs 
corresponding to every 164th entry.  By construction, this creates a 
set of 25 monotonically increasing coordinates, evenly spaced in 
the data population, which we can use in a linear or cubic 
interpolation of the impulse response function.  The graph in 
Figure 7 show the original scatter of values from an example 
HDR/LDR mid-frequency block pair in Figure 6, and the sorted 
interpolation points.  In regions such as the one chosen here, we 
may get diverging impulse responses that we combine into a 
single curve, but this is necessary in order to derive a smooth 
function of one variable.2  Besides enforcing monotonicity, 
independent sorting avoids outliers caused by minor 
misalignments between the LDR and HDR data.  Computing a 
single impulse response function based on luminance further 
minimizes color shifts when we apply it independently to each 
channel during reconstruction. 

                                                
2 Better correlations could be obtained by adding a second 
variable to our scheme, the original HDR luminance.  This adds a 
level of complexity, but could improve the results for some tone-
mapping operators. 
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Figure 7.  Mid-frequency data from a 64x64 pixel region and the derived 

impulse response function to be applied to the highest frequencies. 

The blocks we use to derive the local impulse response functions 
overlap, enabling us to smoothly interpolate the results over the 
image.  This scheme is shown diagrammatically in Figure 8.  
Consider the four neighboring 64x64 blocks:  A, B, C, & D.  Each 
has its center at the intersection of four 32x32 pixel regions, and 
characterizes the response in the surrounding square using the 
method just described.3  To map the response of the impulse for 
pixel P, we pass it through each of the four response functions, 
and linearly interpolate the results based on the position of P. 

To avoid excessive quantization noise in high gradient areas, we 
place a restriction on the maximum overall gain for the impulse 
response within each block.  If the difference between the 
maximum and minimum output values is greater than 5 times the 
difference between the maximum and minimum input values, the 
response is scaled to reduce the average slope to fit the maximum 
1:5 ratio.  This limit is rarely reached in practice. 

 
Figure 8.  Overlapping impulse response blocks permit smooth interpolation 

of output. 

                                                
3 The 50% overlap we have chosen with each neighbor is 
adjustable.  We recommend at least 25% neighbor overlap for 
smooth results. 

It is also important to consider values outside the range of the 
interpolated response pairs.  We extrapolate the last value pair on 
top and bottom out to one half the distance between the last two 
points.  After that, we cap the impulse response function, 
effectively cutting off high frequencies this far above the observed 
gradient values.  This response extension is shown as the faded 
ends on the curve in Figure 7.  Limiting extrapolation in this way 
reduces ringing artifacts caused by sharp edges in the LDR image. 

Results 
We tested three variants of our algorithm each on a computer-
generated HDR animation and two captured HDR video 
sequences.  The first variant of our algorithm assumes a linear 
mapping between HDR and LDR (tone-mapped) versions.  The 
second variant assumes a non-linear, global tone-mapping over 
the image.  The third variant is our “advanced” method, which 
allows the tone-mapping to change locally and non-linearly.  
Figure 9 shows stills from our lighting simulation of an air traffic 
control tower, a beach at sunset, and a trip through a tunnel. 

 
Figure 9.  Our three test scenes.:  an HD-resolution animatin and two VGA-

resolution video sequences. 

Not surprisingly, we found that the linear variant worked well 
enough on the linear tone-mapping operator, but there was 
considerable detail lost in the brighter regions where the linear 
operator had clipped (Figure 10).  The linear assumption was not 
appropriate for any of the other tone-mapping operators, and 
tended to produce excessive sharpness in the highlights due to 
over-shooting (Figure 11).  Also  not a surprise, we found that the 
global, non-linear algorithm variant was acceptable for the global 
versions of the Reinhard [Reinhard et al. 2002] and histogram 
[Larson et al. 1997] operators, but degenerated with the bilateral 
filter [Durand & Dorsey 2002] and the gradient domain operator 
[Fattal et al. 2002], due to their local behavior. 

On the synthetic control tower animation, the advanced algorithm 
performed acceptably for every tone-mapping operator we tried, 
though clamping in the linear operator still lost high frequency 
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information.  In the HDR captured sequences, we noticed a few 
problems at the boundaries of bright objects, which appeared as 
colorful outlines.  Even within some low-gradient fields, such as 
the orange sky of the sunset, patterns would occasionally emerge 
(Figure 12).  These are due to the Bayer pattern of the color image 
sensor, and the best solution is to improve the demosaicing filter.  
Barring that, a comb filter could be applied during HDR recovery 
to reduce the appearance of Bayer mosaic remnants. 

Conclusion 
We have proposed a solution for backwards-compatible HDR 
imagery that stores a low-resolution HDR version of each frame 
as a supplement to the  LDR data.  This places the burden on the 
decompression engine to recover high-resolution HDR frames by 
combining the two streams.  This approach is not necessarily 
better or faster than previous backwards-compatible solutions.  
The real benefit to our approach is the evolutionary path it offers, 
especially for video. 

Any backwards-compatible format is a stop-gap solution that 
requires compromises in encoding efficiency.  This is illustrated 
by the lower performance of the backwards-compatible HDR 
extension to MPEG by Mantiuk et al. [2006] relative to their 
original proposal, which was not backwards-compatible [Mantiuk 
et al. 2004].  Unfortunately, backwards-compatibility is 
considered essential to market adoption, especially for video.  
Furthermore, once we settle on a new encoding standard, we are 
committed to it for about 10 years.  This seems like a long time to 
be using an ornate, stop-gap format, and in the end we might 
prefer a simpler solution that provides a smooth transition to 
native HDR video. 

This is exactly what we offer.  By logically separating the HDR 
and LDR data streams, tying the quality of each to its resolution 
alone, we provide a seamless upgrade path from the LDR world 
of today to the HDR world of tomorrow.  We are free to 
standardize on the most efficient HDR encoding we can devise, 
with no compromises for backwards-compatibility.  We can then 
incorporate this standard in new hardware and software, coupling 
it with a method to extract resolution from the legacy LDR 
stream.  As time goes on, hardware and software will continue to 
improve, enabling real-time decoding of higher resolution HDR 
streams, simultaneously obviating the need for LDR data.  
Eventually, the LDR stream will become subservient to HDR, 
offering little more than a low-resolution tone-mapping 
suggestion for legacy devices.  Color management will then move 
into display devices, and a high dynamic range profile connection 
space will become the preferred delivery medium.   

While the basic recovery method described can be implemented 
efficiently on the GPU and works well enough for global tone-
mapping operators, the advanced method relies on accumulation 
and sorting operations that are more conveniently carried out on 
the CPU, and is currently too slow for real-time playback.  It 
should be possible to implement the advanced method in a more 
GPU-friendly way, by replacing our derivation of the impulse 
response function or off-loading this efficiently.  This is left as 
future work, along with the reverse problem of recovering high 
frequencies in an LDR image given a high resolution HDR frame.  
We expect the solution to look very similar to the current one, 

with better results thanks to the greater bit depth of the HDR 
stream.  
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Figure 10.  Linear tone-mapping clamps highlights, leaving only low-resolution HDR data for reconstruction. 

 
Figure 11. Reinhard tone-mapping of LDR image results in exaggerated high frequencies in some regions if we assume a linear response. 

 
Figue 12.  Advanced HDR recovery method can aggravate Bayer mosaic artifacts, as shown in this sunset capture.  (Tone-mapped input on right.) 
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