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Abstract 
Does extending the number of channels from the 3 RGB 

sensors of a colour camera to 6 or 9 using a multispectral camera 
enhance the performance of illumination-estimation algorithms? 
Experiments are conducted with a variety of colour constancy 
algorithms (Maloney-Wandell, Chromagenic, Greyworld, Max 
RGB, and a Maloney-Wandell extension) measuring their 
performance as a function of the number of sensor channels. 
Although minor improvements were found with 6 channels, overall 
the results indicate that multispectral imagery is unlikely to lead to 
substantially better illumination-estimation performance. 

Introduction  
Illumination-estimation methods for colour constancy have 

been generally based on analysing the RGB values from a 3-
channel colour image; however, the Chromagenic algorithm [1] is 
a recent exception in that it uses a total of 6 channels. The 
Maloney-Wandell [3] is another notable exception. It is defined for 
an arbitrary number of channels. It might be expected that the 
more channels, the better, but is this the case?  In other words, will 
using a multispectral camera potentially lead to better illumination 
estimates than a standard color camera? 

We address this question by testing a number of illumination-
estimation algorithms on 3-channel, 6-channel and 9-channel 
multispectral image data, and comparing their accuracy as the 
number of sensors and their spectral sensitivity functions are 
varied. Since there are many avenues to explore, we restrict our 
attention to synthetic multispectral images; however, the synthesis 
is based on real reflectance and illumination spectra and variations 
on real camera sensitivities. We test the Greyworld, Max RGB, 
Chromagenic, and Maloney-Wandell algorithms. In addition, we 
introduce a new modified version of the Maloney-Wandell 
algorithm called Subspace Testing that works surprisingly well.  

Illumination estimation plays a central role in colour 
constancy, automatic white balancing, and colour cast removal.  
For a scene that is illuminated by light of a spectral power 
distribution that remains constant, except for variations in 
intensity, throughout the whole scene, the goal of illumination-
estimation is to recover the colour (up to a scaling for intensity) of 
that light as it would be seen by a camera in the camera’s RGB 
colour space when it is reflected off an ideal-white surface. Since 
intensity is not recovered, it is natural to use chromaticity space for 
which we use rgb-chromaticity defined as rgb with r=R/(R+G+B) 
etc.  Once the illuminant chromaticity is known, a simple scaling 
of the colour channels derived from the rgb suffices to ‘white 
balance’ the image and remove any colour cast the image may 
have had. 

The paper is organized as follows. First, the error measures 
for performance evaluation are discussed. Second, the standard 
algorithms to be tested are described along with the changes 
required in extending them beyond 3 channels. Third, the 

Subspace Testing algorithm is introduced. Fourth, the procedures 
for introducing the additional camera sensitivity functions and for 
synthesizing multispectral images are described. Fifth, the results 
are given followed, sixth, by the somewhat surprising conclusion 
they lead to. 

Performance Measures 
The angle between the rgb of the actual illumination and the 

estimated rgb provides a good measure of the performance of an 
illumination-estimation algorithm and has been widely used [1][5].  
We use it here as well, but in two new ways. The first is simply to 
extend the definition to N dimensions, where N is the number of 
channels, and measure the angle between two N-dimensional 
vectors. The second is to convert N-dimensional illumination 
estimates into the  rgb chromaticity space of a given 3-channel 
camera and then measure the angle in 3-space. We used the sensor 
sensitivities of Sony DXC-930 for the conversion. 

The advantage of converting the results into rgb space is that 
it allows for fairer comparison across results achieved in spaces of 
different dimensions. Conversion also helps determine whether the 
additional information that comes from higher dimensions will 
help achieve better white balance for the purposes of displaying 
the results on an RGB monitor. The conversion from N-
dimensions to 3 is done by identifying which illuminant from a 
database of known illuminants it is most similar to, and using that 
illuminant’s rgb as the conversion value.  Associated with each 
illuminant in the database is its ‘colour’ in N-dimensions. The N-
dimensional colour to be converted is compared to those in the 
database to find the one with the smallest angular difference.  

Since the illuminants in the database will not cover the N-
dimensional space continuously some error is introduced through 
conversion. However, conversion also introduces an additional 
constraint on the estimated illumination; namely, the conversion 
constrains the results to fall into the space of known illuminants. 
Color-by-correlation [2] employs this constraint. We find here that 
it improves the performance of some other algorithms, Maloney-
Wandell in particular. 

For a set of test images, the following error measures are 
calculated and reported in the Tables below. 

Median Angular Error in Image Space (Image). This is a 
median of all angles between the illuminant estimate in N-
dimensional space and the actual illuminant in the N-dimensional 
space. 

Median Angular Error in rgb Space (rgb). Some algorithms, 
for example Maloney-Wandell, can output rgb vector of the 
estimated illuminant directly, without using the lookup in the 
illuminant database. This measure is a median of all angles 
between illuminant estimate in rgb space (as output directly by the 
algorithm) and the actual rgb vector of the illuminant. 

Median Angular Error for Illuminant Estimates Converted to 
rgb Space (Lookup rgb). This measure is obtained by converting 
the N-dimensional vectors output by the algorithms into rgb space 
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by the lookup in the illuminant database described above. The 
median of the angles between converted illuminant estimates 
(which are now in rgb space) and rgb vectors of the actual 
illuminants is computed.  

Mean of the Top 0.5% Angular Errors of Converted 
Illuminant Estimates in rgb Space  (Max Lookup rgb).   This 
measure is obtained similarly to the “Lookup rgb” measure. The 
N-dimensional illumination estimates output by the algorithms are 
converted to rgb space by lookup in the illuminant database as 
described above. The mean of the top 0.5% of the angles between 
converted illuminant estimates (which are now in rgb space) and 
rgb vectors of the actual illuminants is computed. This measure 
shows the magnitude of the largest errors produced by the 
algorithms. 

Median Error of the Lookup Conversion in the Image Space 
(Error Lookup) As mentioned above, the illuminant database used 
for conversion from N-dimensional image space into rgb space 
does not cover the N-dimensional space completely. This measure 
shows the median of angles between the illumination estimates 
produced by the algorithms and the closest match in the 
illumination database.  

Algorithm Summaries 
We include the Greyworld and Max RGB algorithms in our 

experiments since they bridge across results reported by different 
authors. For an RGB image, the Greyworld algorithm computes 
mean R, mean G and mean B values. These mean values are 
assumed to represent the illuminant colour. In N dimensions, the 
process is the same except carried out over N channels instead of 
3. The Max RGB algorithm finds the pixel with highest R value, a 
potentially different pixel with highest G value and a pixel (which 
is potentially different from previous two) with the highest B 
value. These R, G and B values determine the answer. The process 
for an image with N colour dimensions is the same except using N 
channels. 

We also include results for the ‘do nothing’ algorithm, which 
simply assumes the scene illuminant is always white. The do-
nothing angular error provides a measure of the variation in 
incident illumination and establishes a benchmark with which to 
compare other algorithms. 

The Chromagenic algorithm [1] is somewhat more complex 
than Greyworld and Max RGB. The Chromagenic algorithm 
requires a 6-channel image, but the 6 channels are related to each 
other in a specific way. One way to acquire a 6-channel 
Chromagenic image is to take two registered images of the same 
scene. The first is taken in the usual way using a standard colour 
camera with 3 RGB sensors. The second is taken using the same 
camera, but with a filter placed in front of its lens. Clearly, the 
second 3 channels are related to the first 3. The Chromagenic 
algorithm exploits the relationship between them. 

The Chromagenic algorithm aims to identify the scene 
illuminant as one member of a set of known illuminants. It 
requires a training set of images with numerous images taken 
under each different illuminant. During the training phase, the 
Chromagenic algorithm computes a linear mapping from filtered 
RGB responses to non-filtered RGB responses for each of the 
illuminants. The mapping is computed as follows [1]: 

Let Pj and Pj
F denote Nx3 matrices of RGBs and filtered 

RGBs for N surfaces measured under the j-th of M training 

illuminants. The linear mapping Tj for j-th illuminant is computed 
as 

Tj   =  [ Pj
F]+  Pj  (1)         (1)  

where + denotes pseudo-inverse. 
Given an input image under unknown illumination, the 

Chromagenic algorithm considers each of the training illuminants 
in turn as a candidate. The candidate illuminant whose linear 
mapping best maps filtered RGB responses of the input image to 
non-filtered RGB responses of the input image is returned as the 
estimate of the unknown illumination.  

The Chromagenic algorithm is extended to N-dimensions by 
simply dividing the set of channels into two sets. Two sets 
represent “filtered” and “unfiltered” image. The number of 
channels in the two sets need not to be the same. However, for 
Chromagenic algorithm to work successfully, the “filtered” 
channels may not be completely independent from the “unfiltered” 
channels. The algorithm then computes and uses a mapping from 
“filtered” to “unfiltered” channels as described above. 

The Maloney-Wandell algorithm [4][3] assumes that the 
subspace of reflectances of all surfaces is linear and of reasonably 
small dimension. Dimensionality of the reflectances, M, is 
assumed to be smaller than the number of sensors, N, used to 
obtain the image. Hence the sensor responses for the surfaces 
under a single illuminant fall within a linear subspace of the same 
dimensionality. The illuminant defines the specific subspace.  The 
algorithm proceeds by fitting an M-dimensional hyperplane 
through the origin to the sensor responses from the N-channel 
input image. The orientation of the plane determines the illuminant 
under which the image was taken.  

The Maloney-Wandell algorithm produces spectral power 
distribution of the illuminant (up to a scaling).  This is one of the 
algorithms that can output its illuminant estimate directly in rgb 
space. The spectral power distribution of the illuminant can be 
converted into N-dimensional images space (by using the spectral 
characteristics of the N sensors) or directly into rgb space (by 
using spectral characteristics of the RGB sensors).  

We also introduce a modification to the Maloney-Wandell 
algorithm called the Subspace Testing algorithm.  Subspace 
testing begins with the Maloney and Wandell’s observation that 
the image colours (we extend the term ‘colour’ to N dimensions 
from 3) will lie in a linear subspace of the N-dimensional image 
input space. The modification is in the way in which the subspace 
is identified. Firstly, the Subspace Testing algorithm is trained on a 
set of illuminants with many images under each. For each 
illuminant, an M-dimensional subspace is fitted over the sensor 
responses from its entire collection of images. This hyperplane 
represents the gamut of possible colours (N-dimensional) under 
that illuminant.  To identify an image’s illuminant, Subspace 
Testing—rather than fitting a subspace over the responses present 
in the image as Maloney-Wandell does—tests the fit of the image 
colours to each of the training-derived hyperplanes. In particular, 
the hyperplane for which the root mean square distance between it 
and the input image’s colours is smallest is selected. Since this 
hyperplane is from the training set, it has an illuminant associated 
with it. The colour of that illuminant is then output as the estimate 
of the colour of the image’s illuminant. 
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Data Preparation 
All experiments are based on images synthesized using the 

reflectance spectra, illuminant spectra and spectral sensitivity 
functions contained in the Simon Fraser University dataset 
(http://www.sfu.ca/~colour/data)[6]. The dataset contains spectral 
distributions of 1995 surface reflectances and 287 illuminants. Of 
the illuminant spectra 87 are used for training. All 287 illuminants 
are used for testing.  

Multispectral images are synthesized for the case of 3, 6 and 9 
sensor classes. For the 3-sensor case, we use the sensitivity 
functions Sony DXC-930 and normalize them to have equal total 
sensitivity.  To extend the sensor set to 6, we add the same Sony 
DXC-930 RGB sensors shifted by a fixed wavelength towards the 
red part of the spectrum. To extend the sensor set to 9, we add the 
same camera sensors twice; one copy shifted towards red and the 
second towards blue.  We experiment with different amount of 
shifting. Figure 1 shows the spectral sensitivity functions for 9 
sensors based on shifts of ±16nm.  
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Figure 1. Multispectral sensitivity functions for the 9-sensor case. Sensitivity 
is plotted as a function of wavelength. The normalized Sony DXC-930 
camera RGB sensors are the middle of each group with copies shifted by 
+16 nm and –16 nm. 

The training data set consists of the 87 illuminant spectra and 
the 1995 reflectance spectra. The various algorithms require the 
data in different formats, so the data is optimized for each 
algorithm separately, but they are all restricted to the same set of 
spectra. 

A set of test ‘scenes’ is constructed as follows. The test 
‘scenes’ contain 2, 4, 8, 16, 32, or 64 surface reflectances. For 
each illuminant from the set of 287 test illuminants, and for each 
surface count, 5 different ‘scenes’ are created. Each scene contains 
a random selection of the specified number of surface reflectances 
that were illuminated by the illuminant. This results in 
287x6x5=8610 scenes that are then converted to multispectral 
images based on the ‘camera’ sensitivities. Some experiments use 
only test images with a surface count of 16. 

Each test image consists of 64 pixels independent of its 
surface count.  Images are normalized so that the largest sensor 
response across all channels equals 1. This somewhat simulates 
adjustment of the camera’s exposure settings.  Gaussian additive 
noise is applied to the sensor values at each pixel. Unless specified 
otherwise, the standard deviation of the noise is set to 2%. 

Results 
The first set of results addresses the question as to how the 

performance of the Maloney-Wandell algorithm varies as a 

function of its subspace dimension.  This subspace is restricted to 
being N-1 dimensional or less, but is it optimal to use the highest 
possible subspace dimension? The results are shown in Table 1 for 
the case of a 9-channel (based on 36nm shifts) images of scenes 
with 16 distinct surfaces. Perhaps surprisingly, the algorithm 
performs the best if the dimensionality of the reflectance subspace 
is equal to 1. This result holds in the 3-channel case as well where 
for subspace dimension 1, the error (Lookup rgb) is 3.24, while for 
dimension 2, it becomes 26.3.  

 

Table 1. Maloney-Wandell Algorithm Performance.   

Dim Image rgb 
Lookup 

rgb 
Lookup 
Error 

1 5.29 4.49 3.15 3.90 
2 27.80 27.62 11.05 13.97 
3 20.41 20.70 9.22 10.73 
4 29.38 27.15 10.32 17.67 
5 22.40 21.55 9.44 12.49 
6 44.54 40.35 11.58 32.60 
7 50.62 43.71 11.83 37.18 
8 52.26 48.60 12.30 40.09 

 
The second set of results is from tests with the Subspace 

Testing algorithm. As with the original Maloney-Wandell 
algorithm, it also performs best when the dimensionality of the 
reflectance subspace is chosen to be 1, although there is less 
volatility in this case. The images were generated with 9 sensors 
and 16 surfaces per image.  The results are given in Table 2.  

Table 2. Subspace Testing Algorithm Performance  

Dim Image 
Lookup 

rgb 
1 3.20 2.70 
2 3.87 3.61 
3 3.69 3.59 
4 4.40 4.05 
5 6.26 5.73 
6 9.86 8.24 
7 13.11 10.85 
8 16.58 13.53 

 
The next set of results compares the performance of the 

various algorithms for 3, 6, and 9 sensors for scenes containing 2, 
4, 8, 16, 32 and 64 surfaces. We did some initial experimentation 
to find the best amount of sensor shift and these are the sensors we 
then used. The best performance was with a sensor shift of 36nm. 
“Med” columns in tables 3 to 8 show the results in terms of the 
median angular error for illuminant estimates converted to rgb 
space (Lookup rgb). For each case, “Max” columns show the mean 
of the top 0.5% angular errors of converted illuminant estimates in 
rgb space  (Max Lookup rgb) to provide a measure of how badly a 
method might fail. All Maloney-Wandell and Subspace Testing 
results in this table are based on a 1-dimensional subspace since it 
was shown above to be the best choice. We report results here for 
the Chromagenic algorithm but it is important to remember that 
the sensors here do not satisfy the algorithm’s assumptions. 
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Overall, the results in Tables 3 to 8 indicate a slight improvement 
in performance as the number of channels increases from 3 to 6. A 
further increase from 6 to 9 sensors exhibits no additional 
improvement.   

Wilcoxon test was performed on the results for 16 surfaces. 
For each algorithm, the performance with 6 sensors was compared 
to the performance with 3 sensors and the performance with 9 
sensors was compared to performance with 6 sensors. Given a 
significance level � = 0.01, we found that in all cases save for the 
‘do nothing’ algorithm, the performance with 6 sensors was 
statistically better than the performance with 3 sensors. However, 
at that significance level, the performance with 9 sensors is not 
statistically better than the performance with 6 sensors.  

This is contrary to what we expected to find, which was a 
significant and continuing improvement as the number of channels 
increased. One possible explanation might be simply that all the 
important information in the input spectra is captured with very 
few sensors.  Principal component analysis (PCA) of the 1995 
surface reflectances in our data set finds that 3 dimensions explain 
93.7% of the variance, 6 explain 99.2% of the variance, and 9 
explain 99.7% of the variance.  

Table 3 Algorithm Performance for 2 Surfaces 

Dimensions 3 6 9 
 Med Max Med Max Med Max 
Max RGB 6.42 32.08 5.52 33.57 5.52 32.14 
Greyworld 6.43 31.03 5.42 31.82 5.30 30.61 
Chromagenic n/a n/a 6.45 38.68 6.29 37.29 
Subspace Testing 7.48 33.28 6.29 33.58 5.93 33.76 
Maloney-Wandell 7.78 34.55 6.45 34.55 6.55 34.01 
Do Nothing 17.44 29.00 17.44 29.00 17.44 29.00 

Table 4 Algorighm Performance for 4 Surfaces 
Dimensions 3 6 9 
 Med Max Med Max Med Max 
Max RGB 5.45 28.08 4.90 28.33 4.71 28.47 
Greyworld 5.53 24.83 4.80 24.06 4.54 24.16 
Chromagenic n/a n/a 5.74 36.88 5.72 33.99 
Subspace Testing 5.80 27.74 5.01 28.60 4.80 27.69 
Maloney-Wandell 6.02 29.62 5.18 28.70 5.02 29.34 
Do Nothing 17.44 29.00 17.44 29.00 17.44 29.00 

Table 5 Algorighm Performance for 8 Surfaces 
Dimensions 3 6 9 
 Med Max Med Max Med Max 
Max RGB 3.95 21.51 3.66 22.56 3.60 23.74 
Greyworld 4.59 18.38 4.03 18.55 3.88 18.15 
Chromagenic n/a n/a 4.45 33.37 4.62 31.63 
Subspace Testing 4.13 19.80 3.71 19.80 3.49 19.79 
Maloney-Wandell 4.32 20.67 3.78 20.47 3.99 19.80 
Do Nothing 17.44 29.00 17.44 29.00 17.44 29.00 

 

 

Table 6 Algorighm Performance for 16 Surfaces 
Dimensions 3 6 9 
 Med Max Med Max Med Max 
Max RGB 3.29 18.83 2.98 18.43 2.95 18.43 
Greyworld 4.04 15.79 3.56 15.54 3.57 16.31 
Chromagenic n/a n/a 3.80 27.86 3.95 26.38 
Subspace Testing 3.11 14.88 2.71 14.86 2.70 14.38 
Maloney-Wandell 3.24 15.36 2.88 14.42 3.15 14.59 
Do Nothing 17.44 29.00 17.44 29.00 17.44 29.00 

Table 7 Algorighm Performance for 32 Surfaces 
Dimensions 3 6 9 
 Med Max Med Max Med Max 

Max RGB 2.53 12.53 2.40 13.44 2.39 13.68 
Greyworld 3.68 12.66 3.35 14.20 3.42 14.55 
Chromagenic n/a n/a 3.27 24.57 3.67 23.29 
Subspace Testing 2.22 8.91 2.06 10.67 2.00 10.63 
Maloney-Wandell 2.41 8.92 2.10 11.31 2.66 12.36 
Do Nothing 17.44 29.00 17.44 29.00 17.44 29.00 

Table 8 Algorighm Performance for 64 Surfaces 
Dimensions 3 6 9 
 Med Max Med Max Med Max 

Max RGB 2.24 10.10 2.09 11.02 2.15 10.71 
Greyworld 3.60 10.05 3.41 12.23 3.53 12.32 
Chromagenic n/a n/a 3.04 25.53 3.52 21.28 
Subspace Testing 1.85 6.50 1.80 9.66 1.78 9.77 
Maloney-Wandell 2.01 7.28 1.86 8.61 2.49 10.66 
Do Nothing 17.44 29.00 17.44 29.00 17.44 29.00 

 
To see how the algorithms are affected by noise, we 

synthesized images with varying amounts of Gaussian additive 
noise. Tests were based on synthetic 3-, 6- and 9-channel images 
containing 16 distinct surfaces with noise of increasing standard 
deviation. Table 9 tabulates the Lookup rgb performance measure. 
As expected, the performance of the algorithms worsens as the 
standard deviation of the noise increases.  Different algorithms 
seem to exhibit different levels of performance degradation. Max 
RGB, Greyworld, Maloney-Wandell and Subspace Testing 
degrade gracefully. The Chromagenic algorithm exhibits a steeper 
performance decrease. 

To test the Chromagenic algorithm, we need an appropriate 6-
channel sensor space. In particular the second set of 3 sensors 
derived from the first by the addition of a filter. We present results 
for two types of Chromagenic filter.  The first type is a straight-
line cooling/warming filter defined as follows. 

 
The spectral transmittance of the cooling/warming filter is 
 

Fc(λ) = 1 – s (λ – λmin) / (λmax - λmin)    (2) 
 
where λ ranges from λmin = 380 nm to λmax = 780 nm. We 

varied the filter slope s over the set {-1, -0.1, -0.01, 0.01, 0.1, 1}. 
We found that the best results were obtained with s set to 1.0.Table 
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10 compares the results for this filter type across all the different 
algorithms. 

 

Table 9. The effect of noise on algorithm performance 

Noise STD 0 0.005 0.01 0.02 0.05 0.1 
Dimensions=3       

Max RGB 3.43 3.36 3.36 3.29 3.53 4.96 
Greyworld 4.03 4.03 4.01 4.04 3.91 3.88 

Subspace Testing 3.16 3.15 3.13 3.11 3.17 3.43 
Maloney-Wandell 3.29 3.28 3.27 3.24 3.26 3.53 

Do Nothing 17.44 17.44 17.44 17.44 17.44 17.44 
Dimensions=6       

Max RGB 3.13 3.03 2.99 2.98 3.15 4.25 
Greyworld 3.55 3.55 3.56 3.56 3.49 3.55 

Chromagenic 3.69 3.73 3.71 3.80 4.84 7.66 
Subspace Testing 2.71 2.71 2.71 2.71 2.82 3.16 
Maloney-Wandell 2.83 2.84 2.88 2.88 2.95 3.17 

Do Nothing 17.44 17.44 17.44 17.44 17.44 17.44 
Dimensions=9       

Max RGB 3.17 3.11 3.07 2.95 3.14 4.35 
Greyworld 3.57 3.59 3.57 3.57 3.48 3.36 

Chromagenic 3.57 3.59 3.57 3.95 6.63 9.57 
Subspace Testing 2.64 2.66 2.67 2.70 2.72 2.84 
Maloney-Wandell 2.73 2.82 2.91 3.15 4.21 5.36 

Do Nothing 17.44 17.44 17.44 17.44 17.44 17.44 
 

Table 10 Results for Chromagenic Filters 

 
Aggressive 

Filter 
Cooling 

Filter 

RGB 
Sensors 

Only 
Dimension 6 6 3 
 Med Max Med Max Med Max 
Max RGB 2.97 18.92 3.26 18.44 3.29 18.83 
Greyworld 3.69 15.90 3.94 16.07 4.04 15.79 
Chromagenic 6.91 41.88 17.72 42.57 n/a n/a 
Subspace Testing 2.93 14.82 3.16 14.91 3.11 14.88 
Maloney-Wandell 2.97 15.13 3.39 15.18 3.24 15.36 
Do Nothing 16.15 27.62 17.44 29.00 17.44 29.00 

 
We also considered a more aggressive Chromagenic filter that 

cuts off large portions of the original sensor spectra. The filter has 
3 narrow bandpass windows, one for each of the original sensors. 
Each window has Gaussian shape with standard deviation of 10 
nm. The windows are centered 24 nm beyond each of the 
respective sensor’s peaks. The filter spectral characteristics and 
resulting sensors are shown in figure 2.  

Results using this Chromagenic filter are also tabulated in 
table 10. 
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Figure 2. Top: percent spectral transmittance of the aggressive Chromagenic 
filter. Bottom: resulting 6 sensor sensitivity functions. X-axis is wavelength in 
nm. 

Conclusion 
The experiments reported indicate that multispectral imagery 

is unlikely to be of much benefit to illumination-estimation 
algorithms for colour constancy and automatic white balancing. 
This conclusion goes against the intuition that the additional 
information provided by the additional sensor channels should be 
useful. Of course, this conclusion is only valid for the algorithms 
tested and conditions under which they were tested. It is 
demonstration of what we can expect in general, not a theoretical 
analysis or proof.  In addition to exploring the value of 
multispectral imagery for illumination estimation, a new Subspace 
Testing algorithm, an extension of the principles embodied in the 
Maloney-Wandell algorithm, was introduced that obtains very 
competitive results. 
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