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Abstract 

Scenes lit by multiple colors of illumination provide a 
problem for color constancy and automatic white balancing 
algorithms. Many of these algorithms estimate a single illuminant 
color, but since when there are multiple illuminants, there is in 
fact not a single correct answer. For automatic white balancing 
and color-cast removal in digital images, multiple illuminants 
mean that a single, image-wide adjustment of colors may not 
yield a good result, since the adjustment that makes one image 
area look better, may simultaneously make another look worse.  
Retinex is one method that adjusts colors on a pixel-by-pixel 
basis, and so inherently addresses the multiple-illumination 
problem, but it does not always produce a perfect overall color 
balance. On the other hand, illumination estimation by Support 
Vector Regression (SVR), produces quite good overall color 
balance for single-illuminant scenes, but does not adjust the 
colors locally. By combining Retinex and SVR in to a hybrid 
Retinex+SVR method, some of these problems can be overcome. 
Experiments with both synthetic and real images show promising 
results. 

 
Introduction 

Many scenes involve multiple sources of illumination. One 
very common example occurs when one is indoors and looks 
across the room and through a window to the outdoors. The 
indoor illumination will generally be reddish in comparison to the 
bluish illumination provided by the sky.  These situations can 
lead to very strange looking digital photographs. If the camera is 
correctly balanced for the indoor illumination, the window will 
often look far too blue. The problem is that a single color balance 
setting is insufficient. The colors must, to some extent at least, be 
adjusted locally to account for the local variation in scene 
illumination. 

The majority of the illumination-estimation methods [1-5] 
that have been developed for automatically color balancing 
images make a single estimate of the scene illumination. They, 
therefore, are susceptible to the situations such as the too blue 
window.  Retinex is an exception in that it makes a separate 
illumination estimate for each pixel. Although this is a strength of 
Retinex, it can also be a weakness in that the illumination 
estimate is strongly influenced by the colors in each pixel’s 
neighborhood.   

Our goal is to gain the benefits of both the local and global 
approaches by merging them into a single process. In particular, 
we use Retinex to make local color adjustments and then apply 
the Support Vector Regression (SVR) method to the Retinex-
processed image to adjust the overall color balance. In scenes 
with strong differences of illumination, our hypothesis is that 
because it makes local adjustments, Retinex will attenuate the 
differences in illumination, and as result SVR will be able to 
make a better global adjustment for the illumination. The 

experiments describe below show that this hybrid method works 
better than either SVR or Retinex alone.  
Overview of Retinex and SVR 

In the current context, the most important feature of Retinex 
is that it estimates the illumination color (or equivalently the 
surface color) locally at each pixel by making comparisons 
between the pixel and other image pixels. Comparisons to nearby 
pixels are given more weight than distant pixels, but every pixel 
effects the results at every other pixel to some extent. Retinex 
processing is carried out on each color channel independently. 
The McCann99 [6] version of retinex is based on a multi-
resolution image pyramid. McCann99 initially makes spatial 
comparisons at the coarsest resolution and then propagates the 
results down to the next higher resolution level of the pyramid.  
Since results at the coarsest resolution eventually propagate down 
to influence the finest resolution, distant pixels influence each 
other to some extent. Another important aspect of Retinex is that 
it includes a ‘reset’ operation. The reset means that locally the 
most reflective surface is assumed to be ‘white’. This assumption 
has the effect that other pixels’ colors are adjusted relative to this 
white. 

Support Vector Regression is machine learning technique 
which is an extension of support vector classification [13].  The 
use of the term ‘regression’ in SVR can be thought of by analogy 
to linear least-squares regression; however, SVR is not based on a 
least-square error measure and it works for non-linear functions. 
SVR is a learning technique in that from a set of training data, it 
determines a function that interpolates the data.  SVR has been 
used to estimate [2] by separately interpolating the r and g 
chromaticities as functions of the image’s binarized color 
histogram.  Other histogram-based illumination-estimation using 
neural networks [1], correlation matrices [3], and KL-divergence 
[5], although quite different in their specific details, are similar in 
their overall approach and yield similar results.  Potentially any 
one of them could be substituted for SVR in what follows. 
 
Implementation Details 

For the Retinex implementation, we use the Matlab version 
of McCann99 Retinex [6]. For Support Vector Regression we use 
the “3D” method described in [2] which is based on binarized 
histograms of the image pixels’ (L, r, g) where L = R + G + B and 
r=R/L and g = G/L. . We quantize L into 25 equal steps, and r and 
g into 50 steps so the 3D histograms consist of 62,500 
(25x50x50) bins. After training, SVR provides an estimate of the 
rg-chromaticity of the overall scene illumination based on the 
binarized image histogram submitted to it.  

SVR requires a training set. We created a training set of 
56,730 histograms by random subsampling of colors from images 
contained in the 11,346 “grayball” image database [7].  

Each image is processed first with McCann99 Retinex. The 
binarized Lrg color histogram of the resulting image is then 
passed to SVR which returns the estimate of the illumination 
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chromaticity.  The SVR estimate is not actually an estimate of the 
true illumination, but rather an estimate of the illumination 
relative to the post-Retinex-processed image. The SVR 
illumination estimate is used in a diagonal von Kries 
transformation to correct the post-Retinex image in order to 
adjust it to have the colors it would have had if the original scene 
had been imaged under the canonical illumination. This Retinex-
SVR image is then compared with the ground-truth image of the 
same scene imaged under the canonical white illumination   

We evaluate Retinex-SVR performance at each pixel in 
terms of the distance between measured in rg-chromaticity 
(r=R/(R+G+B), g=G/(R+G+B)) space and in terms of the angle in 
degrees between colors in RGB space. These errors are defined 
by the following formulas, where subscript ‘p’ indicates the result 
after Retinex-SVR and ‘g’ indicates the ground-truth image.  
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We also compute three statistics on the distribution of errors 
across all the pixels in an image: the median, the  RMS (root 
mean square) and the mean of the top 1/2 percentile of the largest 
errors, denoted MMax. In contrast to a single maximum error, 
MMax is a more representative measure of the methods failures. 
RMS of the errors from N  pixels is given by the standard 
formula: 
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The Wilcoxon signed-rank test with a 0.01 threshold for 
accepting or rejecting the null hypothesis is also used to evaluate 
difference between error distributions [8]. 
 
Synthetic Image Experiments 

Our first experiments are based on synthetic images that 
model a scene with two quite distinct illuminants lighting 
different parts of the scene. We generate synthetic scenes 
composed of patches of different reflectance by randomly 
selecting reflectances from the 1995 available in the database 
described by Barnard [9]. The patches are divided into two 
sections by an irregular boundary representing where the 
illumination changes. RGB values for the patches are calculate by 
using two illumination spectra, CIE A on the left, CIE D65 
daylight on the right, and sensor sensitivity functions of the 
SONY DXC-930  camera color balanced equal-energy white. The 
ground-truth image is generated using equal-energy white 
illumination over the whole scene. The sensitivity functions were 
normalized for this white light. All of the spectra and sensitivity 
functions were downloaded from the Simon Fraser University 
color database [10]. 

Figure 1 shows the results of SVR, Retinex and 
Retinex+SVR processing. The top left Mondrian is the input 
image with a white line superimposed demarcating the boundary 
between the two illuminations to make it easier to see. The line is 

not part of the actual input image. SVR applied to the input 
Mondrian estimates the illumination’s rgb-chromaticity as [0.375, 
0.298, 0.308], in other words, as quite reddish in comparison to 
white [0.333, 0.333, 0.333]. This successfully removes some of 
the reddish cast from the left side of the image, but introduces 
more blue to the right side (Figure 1, bottom row on the left).  On 
the other hand, when SVR is applied to the Retinex-processed 
image (Figure 1, middle row on the left), it estimates the 
“illumination” as a bluish [0.296, 0.315, 0.389]. In this second 
case, there was no actual illumination; rather it is SVR’s estimate 
of what the illumination would be if the Retinex output were 
actually an unprocessed input image. Since the Retinex result is 
too blue in comparison to the ground-truth Mondrian (top right), 
correcting the colors based on SVR’s estimate improves the 
image so that now the bottom right (Retinex+SVR) and top right 
(ground truth) images are very similar. Numerical results are 
tabulated in Tables 1 and 2. The Wilcoxon signed-rank test 
applied to the angular error indicates that for this image the 
performance difference is significant and that Retinex+SVR 
outperforms Retinex, and Retinex outperforms SVR. 
 

 
 
Figure 1 Synthetic image results.  Top left:  input image with a white line 
superimposed to indicate the illumination boundary. Top right:  ground-truth 
image under equal energy white light. Middle left: Retinex result. Middle 
right: Retinex illumination map; Bottom left: SVR result. Bottom right: 
Retinex+SVR result.  
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Table 1 Comparison of MMax (see text for definition), RMS and 
median error on a per-pixel basis between the ground-truth image 
values and the processed image values for processing by 
Retinex+SVR, McCann99 Retinex alone, and SVR alone.  
 

 Retinex+SVR Retinex SVR 

Retinex+SVR  + + 
Retinex -  + 

SVR - -  
Table 2 Comparison of the different methods via the Wilcoxon 
signed-rank test with 0.01 as the threshold applied to the angular 
errors. A “+” means the algorithm listed in the corresponding row is 
better than the one in the corresponding column.  A “-“ indicates 
the opposite. 

 
Real Image Experiments 

The first set of real-image experiments is based on some real 
scenes we constructed in the lab containing two distinct 
illuminants similar to those found indoors and outdoors. A bluish 
illuminant was created by placing a light blue filter in front of a 
tungsten lamp. The reddish illuminant was a Solux 4100K 
tungsten bulb connected to a dimmer. By adjusting the dimmer, 
the color temperature of the light drops significantly.  These 
scenes were photographed using a Sony DSC V1 camera. To 
obtain the ground-truth image, a white reflectance standard was 
introduced at the side of the scene, and an additional image was 
taken under unfiltered tungsten light. The RGB channels were 
then scaled in order to make the reflectance standard perfectly 
white (i.e., R=G=B=255). 

The first test scene is shown in Figure 2a. It contains some 
books, boxes, and a Mini Macbeth ColorChecker and is lit with 
reddish light from the left and bluish light from the right. Figure 
2b shows the same scene imaged under white light. In addition to 
using white light, the resulting image was further white balanced 
by scaling the RGB channels so that the image of a calibrated 
white reflectance results in R=G=B.   

Figure 2c shows the retinex result with the intensity at each 
pixel adjusted to match the input image in Figure 2a.  Although 
retinex processing affects the luminance as well as the 
chromaticity of each pixel, here we are interested only in its effect 
on chromaticity and are restoring the luminance (R+G+B) to 
match that of the input image. The SVR result, which is also 
adjusted to preserve pixel luminance, is shown in Figure 2d. 
Since SVR makes the same color adjustment across the whole 
image, anything it does must inevitably be a compromise. In this 
case, SVR has removed some of the blue cast from the input 
image, but this introduces some orange cast in other parts of the 
image. On the other hand, the Retinex+SVR result shown in 
Figure 2e contains neither a blue nor an orange cast. SVR 
determined the single value for the illumination in rgb-
chromaticity as a slightly bluish [0.306, 0.308, 0.385] in 
comparison to white [0.333, 0.333, 0.333]. When applied to the 
Retinex-processed image, SVR’s estimate is [0.324, 0.341, 
0.327].   

The numerical results presented in Tables 3 and 4 show that 
retinex and SVR perform with similar accuracy for this image, 
while the Retinex+SVR hybrid outperforms each of the others 
taken individually. 
 

 
 
Figure 2 Two-illuminant books scene:  (a) input image with reddish light 
coming from the left and bluish from the right; (b) ground-truth image 
captured under white light matching the camera’s white point; (c) Retinex 
result  (d) SVR result (e) Retinex+SVR result. 
 
 
 Distance (* 102) Angular 
 MMax RMS Med MMax RMS Med 
Retinex+ 

SVR 
59.13 12.27 5.84 49.53 12.66 6.46 

Retinex 60.72 14.77 9.73 15.07 13.27 12.29 
SVR 59.21 14.58 8.38 53.62 16.71 10.18 

Table 3 Comparison for the two-illuminant books scene of MMax 
(see text for definition), RMS and median errors measured on a 
pixel-by-pixel basis between the ground-truth image values and the 
processed image values for processing by Retinex+SVR,  Retinex 
alone, and SVR alone 
 
 Retinex+SVR Retinex SVR 
Retinex+SVR  + + 
Retinex -  = 
SVR - =  
Table 4  Comparison of the different methods via the Wilcoxon 
signed-rank test for the two-illuminant books scene.  A “+” means 
the method listed in the corresponding row is better than the one in 
the corresponding column; a “-“‘ indicates the opposite; and a “=” 
indicates they are indistinguishable. 

We designed a second scene in the lab intended in this case 
to model the situation of being indoors in a room with a window 
to the outdoors. The scene shown in Figure 3a consists of a toy 
human figure ‘outdoors’ seen through a window.  The mountain 
scene on the left is a picture on the wall ‘indoors’. The colored 
ball is also indoors. The outdoor objects are lit with sky blue 
light, while the indoor ones are lit by reddish-orange light. Figure 
3b is the ground truth image with pixel intensities adjusted to 
match those of the input image. The Retinex result in Figure 3c 
shows that Retinex reduces the magnitude of the difference 
between the two illuminants, but the overall color balance is to 
yellow. SVR determines the single value for the illumination in 
rgb-chromaticity as a slightly reddish [0.343,    0.335,   0.322].  

Distance (* 102) Angular 
 

MMax RMS Med MMax RMS Med 
Retinex+ 

SVR 15.19 5.15 2.28 15.74 6.27 3.23 

Retinex 19.59 7.58 3.28 18.41 7.86 4.43 
SVR 30.44 10.97 4.66 33.15 13.08 5.96 
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On the other hand, when SVR is applied to the Retinex-processed 
image, SVR’s estimate is [0.346, 0.358, 0.297].  SVR provides 
better overall color balance in Figure 3d, but the outdoor part 
becomes even bluer. The Retinex+SVR result, Figure 3e, has the 
indoor section reasonably well balanced and has reduced, but not 
eliminated the outdoor blue.  Numerical results are presented in 
Tables 5 and 6. 
 

 
Figure 3  Window scene: (a) input image with bluish outdoor illumination and 
red-orange indoor illumination.  (a) input image (b) ground-truth image 
captured under white light that matches the camera’s white point; (c) Retinex 
result (d) SVR result (e) Retinex+SVR result 

 
 Distance (* 102) Angular 
 MMax RMS Med MMax RMS Med 
Retinex+ 

SVR 
36.74 7.71 3.55 42.24 8.99 5.04 

Retinex 50.05 11.98 4.85 56.33 13.38 8.39 
SVR 40.17 9.76 6.26 43.26 10.94 7.83 

Table 5 Comparison of MMax (see text for definition), RMS and 
median errors measured on a pixel-by-pixel basis between the 
ground-truth image values and the processed image values for 
processing by Retinex+SVR,  Retinex alone, and SVR alone.   
 

 Retinex+SVR Retinex SVR 

Retinex+SVR  + + 
Retinex -  - 
SVR - +  
Table 6 Comparison of the different methods via the Wilcoxon 
signed-rank test for the window scene.  A “+” means the method 
listed in the corresponding row is better than the one in the 
corresponding column. A “-“‘ indicates the opposite. 

In addition to laboratory scenes, we processed images of 
other typical scenes.  The advantage of the laboratory scenes is 
that it is possible to obtain a ground truth image with which to 
evaluate the error in illumination estimation. Outside the 
laboratory, it is difficult to make enough measurements of the 
illumination distribution to obtain the ground truth image.  
During a subjective evaluation of several hundred images, we 
found that in many cases there is little difference in the overall 
image quality between Retinex, SVR and Retinex+SVR. This is 
in part because the majority of scenes do not contain dramatic 
differences in incident illumination.  However, in the cases where 
the scene clearly contains quite different illuminants, 

Retinex+SVR is superior. An example of one such scene and the 
results of the three methods is shown in Figure 4. In this example, 
Retinex has again reduced the difference in illumination, but has 
left the image with a slight blue cast that Retinex+SVR removes.  
Although our goal has been to remove the color shifts created by 
multiple colors of illumination, success in reaching that goal does 
not guarantee that this will lead to preferred image renderings. 
However, being able to compute the illumination distribution 
should prove useful when calculating a preferred rendering. 

 

   
         (a)                                     (b) 

   
         (c)                                         (d) 
Figure 4 Typical natural image with two illuminations: (a) input image; (b) 
Retinex result; (c) SVR result; (d) Retinex+SVR result 
 

Retinex Iteration Time 
McCann99 Retinex is a multi-resolution algorithm and one 

of its key parameters [11] is the number of iterations it performs 
at each resolution. We determined the optimal setting for 
Retinex+SVR by plotting the error as a function of the number of 
iterations. Figure 5 shows the plot for the case of the two-
illuminant window scene. The plots for other scenes were similar 
with the minimum error found at 4 iterations. All our experiments 
were thus based on 4 iterations. 

    
Figure 5 Median angular error as a function of the number of iterations 
Retinex used at each resolution. This plot is for the two-illuminant window 
scene; however, for other scenes the results are qualitatively similar.  
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Conclusion 

Many images are of scenes with at least two distinct 
illuminants. These images present a challenge for automatic white 
balancing algorithms because there is no single right answer. 
Retinex is one method that makes local adjustments for the 
illumination, but it does not always get the overall color balance 
correct. We proposed a hybrid Retinex+SVR method and shown, 
at least for the limited set of images it is possible to create in the 
laboratory, that it works better than either SVR or Retinex 
working separately.  

SVR is not the only illumination-estimation method that 
could be hybridized with Retinex. Since there are several 
learning-based illumination methods [1-5] of similar accuracy, it 
is reasonable to suppose that any one of them could be substituted 
for SVR in this context with similar results. 

Our goal was to remove the color effects of illumination; 
however, as Hubel [12] has argued perhaps in terms of creating 
an interesting image it is best to preserve the illumination effects. 
We have not addressed the problem of preferred reproduction 
directly, but assume that any additional information that can be 
extracted from an image concerning the distribution of 
illumination color will at some point be helpful in creating 
pleasing images. 
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