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Abstract 
Center/Surround (C/S) response is the first step in human 

vision, which represents many aspects of visual perception. The 
C/S model has hinted to sharpness, lightness, and contrast 
improvements in image processing. Retinex is a root of C/S based 
vision model which restores an intrinsic reflectance image by 
removing the spatial non-uniformities of illumination. To recreate 
a viewer’s sensation of real scenes, Tone Mapping Operators 
(TMO) have been actively developed during the past decade in two 
ways of Spatially-invariant and Spatially-variant approaches and 
now the latter is becoming major stream. However, since most of 
spatially-variant TMO are designed independent of input/output 
Tone Reproduction Curve (TRC) and based on “pixel-based” C/S 
process, they meets a difficulty in keeping the output local contrast 
as same as the input image.  

This paper proposes an improved spatially-variant TMO 
based on an “area-based” C/S process different from “pixel-
based” C/S process that maintains local visual Contrast based on 
Weber Fraction criterion under the given system TRC. The paper 
describes a basic mathematical formula and introduces 
experimental results applied to natural images.  

Introduction 
The Center/Surround (C/S) response is the first step in human 

vision, which represents many aspects of visual perception [1], [2]. 
The C/S model has hinted to sharpness, lightness, and contrast 
improvements in image processing. Retinex is a C/S based vision 
model which restores an intrinsic reflectance image just as seen 
under uniform illumination by removing the spatial non-
uniformities.  

During the past decade, the visual tone mapping has been 
common and important topics because the imaging systems have 
been strikingly evolving to capture HDR scenes, while most 
available displays are still limited in their LDR. To recreate the 
viewer’s sensation of the captured scene, HDR has to be 
compressed to LDR of display devices. Tone Mapping Operators 
(TMO) aiming at this objective are categorized into two types,   
� Spatially-invariant global operators 
� Spatially-variant local operators  
Spatially-invariant mappings apply a global TRC to a whole 

image, which is determined by the viewing condition and the 
content of the image. Since the input-to-output mapping can be 
provided with a LUT, it’s realized simply and quickly. However, 
it’s hard to preserve the local visual contrast because the TRC with 
monotonously increasing characteristics operates as an image-
independent point process not to cause the tonal inversion.  

On the other hand, Spatially-variant mappings apply an 
image-dependent spatial TMO to improve the local visual contrast. 
Since these operators realize flexible mappings, they are becoming 
main stream in recent years.  

This paper proposes an improved spatially-variant TMO 
based on an “area-based” C/S process different from “pixel-based” 
C/S process that maintains local visual Contrast based on Weber 
Fraction criterion under the given system TRC. Our “area-based” 
TMO manages a local contrast gain defined by Weber Fraction in 
a different manner from conventional TMO.  

Pixel-based Contrast Mapping 
Retinex [5] is a root of spatially-variant TMO. Basically it is 

a model to remove the spatial non-uniformity of illumination 
based on C/S process, where S reflects a spatial average in the 
surround luminance. Simply, an image I captured by camera is 
equivalent to the product of the reflectance R and illuminant L. 
According to R ≅I /L, the reflectance R is restored from Image I by 
inferring the illumination L [6]-[9]. Our Adaptive Scale-Gain 
Multi-Scale Retinex [10], [11] worked well to improve the image 
contrast by setting the weights automatically. However, since 
Retinex is designed irrelevant to the input/output TRC, sometimes 
it causes unnatural gradation in tonal rendition or degradation in 
local contrast hard. Hence we developed a spatially-variant TMO 
to enhance the local visual contrast relevant to the input/output 
TRC. We have reported two types of spatially-variant TMO for 
local contrast enhancement as follows. 

Local Contrast Range Transform (LCRT)  
Recently HDR to LDR TMO has been developed actively. 

Spatially-invariant TRC operates point-wise on the image based 
on the global adaptation of vision, as reported by Tumblin and 
Rushmeier [12] or Ward Larson [13]. While, spatially-variant 
TMOs proposed by Chiu [14], Pattanaik [15], Fattal [16], Tumblin 
[17] or Fairchild [18] try to recreate a real world appearance by 
local process.  

In our previous papers, Monobe et al [19]-[21], introduced a 
new criterion to a local contrast. We proposed LCRT (Local 
Contrast Range Transform) operator to preserve a local contrast 
between input and output images relevant to the given TRC. The 
conceptual model of LCRT is illustrated in Fig.1. 

The condition to preserve the local contrast is given by 
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Where, f(x,y) and fave(x,y) denote the input pixel luminance and its 
local average as a surround. As well, g(x,y) and gave(x,y) denote the 
corresponding output pixel luminance and its local average, 
respectively.  
LCRT operator should meet the Eq. (1) under the given TRC as 

{ })()( yx,fTRCyx,g =  (2) 
Taking the log and denoting the variables in capital letters, 

( ) ( ) ( ) ( )y,xFy,xFy,xGy,xG aveave −=−
  (3) 
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Solving the Eq. (3) by the first-order Taylor expansion, the output 
g(x, y) in linear space is described by 

( ) { } )()( x,yLCRTx,yfTRCy,xg ⋅=  (4) 
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The solution (4) is composed of a product of two terms. The 
first term corresponds to the system TRC itself and the second 
term reflects the LCRT operator in Eq. (5).  
LCRT operator is described as a function of input C/S ratio with 
the exponent term of “spatially-variant” contrast gain factor, 
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Since LCgain (x, y) includes a first-order differential 
operation for TRC, it should be a differentiable smoothed curve in 
entire range. Fig.2 shows how the LCRT works different from 
Retinex. It restores the highlight visibility lost by conventional 
knee-compressed TRC used to commercial digital video camera. 
As shown in a scan line profile, LCRT keeps smoothed tone under 
the knee TRC, while Retinex restores a scene reflectance just as 
seen under uniform illumination. That is to say, LCRT claims the 
preservation of local contrast different from the preservation of 
reflectance in Retinex. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. C/S based Local Contrast preservation model LCRT 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Essential difference between Retinex and LCRT 

Weber Contrast Gain (C-Gain) TMO by Yamashita 
Although LCRT preserves the local contrast under a given 

TRC by matching the input C/S ratio to that of output as described 
by Eq. (4), it doesn’t include contrast gain function.  

More recently, in our previous paper [22], Yamashita newly 
introduced a contrast gain factor called Cgain. 

The definition of contrast is not standardized but defined in 
different manners such as 

(A) Simple Contrast:        minmaxR L/LC =  
(B) Michelson Contrast:  )()( minmaxminmaxM LL/LLC +−=  
(C) Weber Fraction:        L/LCW ∆=   
(D) RMS Contrast: root mean square of Weber fraction 
Since Weber fraction is a simple but vision-based useful 

measure for contrast management, we applied it to enhance the 
local visual contrast as follows. 

Cgain is defined by the ratio of Weber fraction Cwg of output 
g(x,y) vs. Cwf of input f(x,y) as,  
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F(x,y) and G(x,y) are the logarithm of  f(x,y) and g(x,y). 
This signifies the slope of input vs. output in log space.  
Eq. (7) is written by the following formula. 
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The condition that the average output traces just on a given TRC to 
maintain the smoothed tonal mapping is given by 

( ))()( yx,fTRCyx,g aveave =  (9) 

Solving Eq. (8) for the most simple linear TRC: gave(x,y)= 
fave(x,y), 
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Where, the surround fave(x, y) is given by a Gaussian average  
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Area-based Weber’s Contrast Mapping 
Both LCRT and C-Gain TMO by Yamashita, control a local 

contrast based on C/S relations under the constraints of given 
system TRC. Since the center C corresponds to the “pixel” in 
attention and S to its “surround” given by the average luminance, 
the model works to enhance the image contrast in “pixel-based” 
processing. 

While, more universally, the center C should be better to be 
treated not by “pixel-based” but by “area-based” in the C/S visual 
field, because a tiny pixel as a center C may not have enough size 
to contribute to the visual contrast due to the spatial frequency 
response limit of human vision. 

Here we introduce an “area-based” C/S TMO defined by 
generalized Weber Fraction as shown in Fig. 3.   
Letting a small and a large surrounds be SS with scale m=S and SL 
with scale m=L, the “area-based” Weber Fraction CW is simply 
given by the difference between center and surround as 
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Now we introduce Weber Contrast Gain factor by taking the 
ratio of output vs. input Weber Fraction as 

( ) ( )11)( −−== inoutin
W

out
Wgain /C/Cyx,WC ββ  (14) 

Where, β in and βout denote the input and output C/S ratios. If we 
can keep the Weber Contrast Gain at constant  

(constant) )( α≅yx,WCgain  (15) 

the local contrast in output image will be uniformly enhanced for 
α > 1 under� a given TRC.   

The output C/S ratio βout to meet the Eq. (15) is given by 

 1}1)({)( +−= y,xy,x inout βαβ  (16) 

Considering the following relations in a “area-based” small and 
large surrounds corresponding to C and S for input and output 
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we obtain the small surround for output to meet Eq. (17) as 
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Since the input surrounds are directly calculated from original 
image f(x, y) by 
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we can easily get the term inside the bracket in Eq. (18). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 3. Area-based Contrast Enhancement model by Weber Fraction 

However, the output surrounds 
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are still unknown.  
Where, )( yx,ĝ  means the final solution we want to get after 
Weber Contrast enhancement to meet the Eq. (16). 
Assuming the large surround for output obeys system TRC as 

{ })()( yx,STRCyx,S in
L
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the right side of Eq. (18) is decided. 
Hence, we arrive at a conclusion to get an inverse solution for 

)( yx,ĝ  by a de-convolution of 
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[A: Simple Solution for Weber Fraction TMO] 
In case of simple linear TRC, assuming 
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to maintain the output average luminance as same as input after 
processing, Eq. (18) is reduced to 
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This means a small surround around the output )( yx,ĝ  should be 
composed of two fractions of small surround )( yx,S in

Sα  and large 
surround )()-(1 yx,S in

Lα  for the input.  
When the center C is handled as “pixel-based” just as C-Gain 
TMO by Yamashita, the small surrounds are replaced by  

)()( yx,fyx,S in
S =  and )()( yx,ĝyx,S out

S =  

Thus the “pixel-based” simple linear solution is given by 

)()-(1)()( yx,Syx,fyx,ĝ in
Lαα +=  (25) 

Area-based Solution for Weber Fraction TMO 
 We tried to get “area-based” solution for Eq. (24) by two 
types of de-convolution, 

[1] De-Blurring  [2] Fourier Transform 
Fig.4 illustrates the inverse transform procedure to meet the 

expected Weber Fraction gain after contrast enhancement using 
de-convolution method for the proposed Weber Fraction TMO. 

[B: De-Blurring Solution] 
Since the left term in Eq. (22) represents a Gaussian diffusion 

process as a image blurring model, the objective output )( yx,ĝ  is 
restored by de-blurring process for the output center S= )( yx,S out

S , 
that is, by image sharpening process [3],[4] as follows. 
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Where, ( )y,xGS
2∇  is well-known Laplacian operator as 

described here by second order Gaussian derivative as 
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Figure 4. De-convolution Procedure by Fourier Transform for solving Weber 

Fraction modeled TMO  

 [C: Fourier Solution] 
Taking the Fourier transform { }•ℑ of Eq. (22), we get 

)}({)}({)}()({ yx,ĝyx,Gyx,ĝyx,G SS ℑ⋅ℑ=⊗ℑ  (28) 

Thus )( yx,ĝ  is given by inverse Fourier transform { }•ℑ−1  as 
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where h{ê} represents the right term in Eq. (22), that is,  
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Experimental Results  
We verified the basic contrast enhancement function in the 

proposed Weber Fraction TMO through experiments. 
Fig.5 shows a result for test image “Alhambra” by our model 

in comparison with C-gain TMO by Yamashita in case of linear 
TRC. Both models are tested under the same contrast gain of 
Cgain=2.0 and α=2.0. 

All the solutions seem to be much the same in well-enhanced 
contrasts without changing the average luminance of original. But 
looking carefully the close-up details, our [A: simple Weber TMO] 
is almost close to [C-gain TMO by Yamashita], because both are 
based on “pixel-based” Weber Fraction, that is, a center C in input 
image is manipulated as pixel f(x, y) itself as well as output.  
Maybe both will come down to the same mathematical description, 
though we haven’t proved yet.  
While, our [B: Weber TMO by De-Blurring] and [C: Weber TMO 
by Fourier] solutions work in different, because they are modeled 
not by “pixel-based” but by “area-based” C/S fields. However in 
general, [B: De-Blurring] algorithm loses its fine resolution a little 
bit in spite of nice impression in whole image contrast after 
enhancement, because a second order Gaussian Derivative isn’t an 
exact de-convolution but an approximation to the inverse diffusion. 
Among all, [C: Weber TMO by Fourier] solution resulted in the 
best that the local contrast in fine details is nicely enhanced and the 
color rendition is better than others. 

Fig.6 shows another result in case of a non-linear TRC. Here 
we tested a simple gamma compression TRC given by 

( ) 010;)()()( .yx,fyx,fTRCyx,g <<== γγ  (31) 

The test image “Genoa” is beforehand corrected with γ=0.65 to 
improve the shadow visibility but reduced in highlight contrast by 
gamma compression. By applying the same models as above, all 
the resultant images are well improved in the highlight visibility as 
seen in the close-up of “watch tower”. Among them, [C-gain 
TMO by Yamashita] worked better in spite of its simple algorithm 
and again [C: Weber TMO by Fourier] resulted in the best. 

Fig.7 is a picture of “white mausoleum” with delicate texture 
in the highlight. In comparison with “pixel-based” contrast 
enhancements by [C-gain TMO by Yamashita] and [A: simple 
Weber TMO], the proposed “area-based” [C: Weber TMO by 
Fourier] look to be best in the appearance of whitish dome texture, 
while [B: Weber TMO by De-Blurring] lacks in the fine textural 
appearance, maybe due to the imperfect de-convolution filtering.  

Conclusions 
The paper presented a visual contrast enhancement model 

based on well-known Weber Fraction. We proposed a new “area-
based” Center/Surround contrast mapping model and verified its 
basic function through experiments. Weber fraction model derived 
from “area-based” C/S ratio claims that the visual contrast would 
be better enhanced than “pixel-based” model, because the resultant 
center field C with appropriate size is more clearly receptive to 
human vision.   

However we haven’t clarified the optimal size of C/S fields 
yet. It may be determined depending on the image contents. At 
present, the de-convolution solution by FFT resulted in the best, 
but takes high computation costs. A simplification and proper 
selection of C/S field’s sizes through much more image tests under 
different TRC are left for our future works.  
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Figure 5. Contrast enhancement by Weber Fraction TMO  
(Test image “Alhambra with linear TRC) 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Contrast enhancement by Weber Fraction TMO 
 (Test image “Genoa” with gamma compression TRC) 
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Figure 7. Contrast enhancement by Weber Fraction TMO  

(Test image “White mausoleum” with linear TRC) 
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