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Abstract 
A feasible approach to spectral color management was previously 
defined to include lookups performed within an interim connection 
space (ICS). The ICS is situated between a high-dimensional 
spectral profile connection space and output units. The definition 
of ICS axes and the minimum number of ICS dimensions are 
explored through consideration of LabPQR, an ICS described in 
earlier work. LabPQR has three colorimetric dimensions 
(CIELAB) and additional dimensions to describe a metameric 
black (PQR). Several versions of LabPQR are explored. One type 
defines PQR axes based on metameric blacks generated from 
Cohen and Kappauf’s spectral decomposition. The second type is 
constructed in an unconstrained way where metameric blacks are 
statistically derived based on the spectral characteristics of the 
target output device. For a six-dimensional LabPQR, one that uses 
three colorimetric and three metameric black dimensions, it was 
found that Cohen and Kappauf-based LabPQR was inferior for 
estimating the spectra when compared to the unconstrained 
method. However, when the limited spectral gamut of an output 
device was introduced through printer simulation and necessary 
spectral gamut mapping, the disadvantage of six-dimensional 
Cohen and Kappauf-based LabPQR dissipated. On the other hand, 
reducing LabPQR to only five-dimensions (two metameric black 
dimensions) reintroduced the advanatage of the unconstrained 
approach even after virtual printer was consulted and spectral 
gamut mapping calculated. Importantly, it was found that the five-
dimensional unconstrained approach achieved equivalent levels of 
performance to a full 31-dimensional approach within simulated 
printer spectral gamut limitations. 

Introduction  
An important goal of spectral color management is to reproduce 
images that match originals under arbitrary illuminants.  Spectral 
reproduction requires new approaches including spectral profiling 
of devices, spectral profile connection spaces (PCSλ), spectral 
image processing and new quality metrics. Spectral color 
management will take advantage of all these concepts and require 
transformation chains that deliver high-quality results quickly. 

In previous research [1]-[3], a spectral reproduction workflow 
from scene to hardcopy was proposed. One of the difficulties 
associated with spectral reproduction is its high dimensionality 
since more information is necessary for reproducing samples with 
illuminant-independence than needed for more traditional 
colorimetric reproduction.  The proposed workflow included a step 
where spectra of high dimensionality were converted to a lower-
dimensional encoding known as an interim connection space (ICS) 
[3]-[4]. 

Derhak and Rosen proposed an ICS called LabPQR [5]-[6].  
LabPQR is an ICS that has three colorimetric axes (CIELAB) plus 
additional spectral reconstruction axes (PQR). PQR describes a 
stimulus’ metameric black [7]-[8], a spectral difference between 
the actual spectra and a spectra derived from only knowledge of 
the CIELAB components. In a transformation from the 
colorimetric encoding, a spectrum is derived from CIELAB values 
and is combined with a meteric black derived from the PQR 
encoding. One approach described in the literature for building 
LabPQR [5] uses the spectral gamut of a particular output device 
to derive the transformation from CIELAB to a metamer. This 
device-dependence of LabPQR as an ICS does not violate device 
independence assumptions of color management because the ICS 
is utilized on the output side of the PCSλ.  The PCSλ is still device 
independent. All ICS information could sit within the output 
device profile. This information could include the transformation 
from spectral units to ICS. 

Device-independence of ICS is not a requirement for spectral 
color management. However, it may be desirable to move toward a 
generalized ICS so that real-time spectral image processing can be 
standardized. Since the PQR dimensions of LabPQR describe a 
metameric black, generalization would include defining a 
metameric black that is independent of the spectral gamut of any 
particular output device. 

Wyszecki hypothesized a fundamental spectral stimulus for 
every tristimulus value and a specific metameric black that would 
represent an object’s particular spectral characteristics [7]. Cohen 
and Kappauf proposed spectral decomposition scheme know as 
“matrix-R” [9]-[10]. The matrix-R operation is based on color-
matching functions weighted by a specific illuminant. It is a 
widely used means for composing a fundamental stimulus. For 
example, Cohen and Kappauf’s approach is utilized for the spectral 
reconstruction from given colorimetric values for Fairman’s 
parameric decomposition [11]. 

The spectral characterization of a printer [12] yields the 
forward relationship from fractional area coverage to spectra.  
Unfortunately, spectra are typically 31 or more dimensional values.  
For some spectral color management implementations, the spectra 
are then converted to the lower-dimensional ICS. For this 
discussion, we use LabPQR as the ICS. In previous research [13], 
an inversion of the printer characterization was successfully 
performed to choose fractional area coverages for a requested 
spectrum. In the inversion process, spectral gamut mapping [5]-[6] 
is necessary since an answer must be delivered for any arbitrary 
spectral request, even those outside of a printer’s spectral gamut.  
A previous spectral gamut mapping proposal for LabPQR was 
based on a single stage optimization for minimizing both 
colorimetric and spectral error simultaneously [13]. 
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In this research, LabPQR configurations are evaluated in 
terms of how to devise metameric black and what number of 
dimensions to include. Interactions between generalization and 
dimensions are discussed. First, constraining LabPQR, to use 
Cohen and Kappauf’s spectral decomposition (CK-based LabPQR) 
is explored. The alternative spectral decomposition approach is to 
derive metameric black after a statistical analysis of a specific 
device’s metamer space (unconstrained LabPQR). For several 
types of datasets, the spectral reconstruction accuracies for CK-
based LabPQR will be illustrated and compared to unconstrained 
LabPQR. Quality tradeoffs between the two approaches and the 
number of spectral reconstruction dimensions will be examined. 

Spectral Decomposition for ICS Definition 
LabPQR [5] is an interim connection space (ICS) for use in 
spectral color management. The first three dimensions are 
CIELAB values under a particular viewing condition, and the 
additional dimensions are spectral reconstruction dimensions 
describing a metameric black (PQR). A six-dimensional example 
of LabPQR has been discussed in the literature [5]-[6] and it has 
been demonstrated for use in spectral gamut mapping [6], [13]. 

Spectral reconstruction from a six-dimensional LabPQR is as 
follows:  

pc VNTNR +=ˆ
 , (1)      

where T is a n by 3 transformation matrix where n counts 
wavelength, V is a n by 3 matrix describing PQR bases, Nc is a 3 
by 1 tristimulus vector, and Np is a 3 by 1 vector of PQR values. 
Here, the subscriptions for “c” and “p” imply colorimetric and 
PQR values, respectively. Note that T is applied to tristimulus 
values converted from CIELAB values. 
 Derivation of the V matrix depends on both the nature of the 
metamer created through the T matrix from LabPQR’s CIELAB 
dimensions and the spectral gamut that is being described by the 
ICS. An approach that puts no a priori constraints on derivation of 
the T matrix derives it directly from the spectral space of the 
device being profiled.  We call this Tu for unconstrained. A second 
LabPQR derivation is based on Cohen and Kappauf’s metameric 
black, where no specific device is referred to in the derivation of T. 
Instead, based on Cohen and Kappauf’s work, T is determined by 
a n by 3 matrix of ASTM weights, A, applicable to a specific 
illuminant and observer pair. This is referred to as Tck : 

( ) 1T −= AAATck . (2) 
Tck is derived referring to Cohen and Kappauf’s spectral 
decomposition, the so-called “matrix-R” [9]-[10]. Since the Tck is 
based on the color-matching functions weighted by the defined 
illuminant and observer pair, the degree of device-dependency is 
decreased in such a LabPQR. 

For both the CK-based and unconstrained LabPQR spaces 
tested here, PQR bases V are derived from Principal Component 
Analysis (PCA) [14] on a set of the metameric blacks specific to 
the device.  Thus, for the unconstrained version of LabPQR, both 
terms on the right hand side of Eq. (1) depend on the device 
whereas for the CK-based approach, Tck is constrained to be 
Cohen and Kappauf’s matrix-R leaving V as the only device 
dependent term on the right hand side of Eq. (1). 

The metameric blacks are spectral differences between the 
original spectra R and the fundamental stimuli derived from the 
tristimulus values, expressed as: 

cTNRB −=
, (3) 

where T may either be Tu or Tck, depending upon which approach 
is being used. 

To make LabPQR into an ICS, only a limited number of 
eigenvectors should be preserved to reduce dimensions.  Often the 
first three eigenvectors are preserved as the PQR bases: 

),,( 321 vvvV =PQR , (4) 
where vi are eigenvectors approximating the merameric black set.  

To explore the influence of dimensional reduction in LabPQR, 
the spectral representation portion in Eq. (4) will be changed by 
reducing the numbers of dimensions, such as PQ bases and only a 
P basis, respectively expressed as: 

),( 21 vvV =PQ  (6) 
and 

1vV =P . (7) 
For Eq. (6), only the first two eigenvectors are preserved making 
for a five-dimensional LabPQR and for Eq. (7), only the most 
significant eigenvector is preserved making for a four-dimensional 
LabPQR. 

Spectral Gamut Mapping 
Spectral gamut mapping can be considered from two veiwpoints: 
colorimetric and spectral [5]-[6]. In a previous research [13], the 
two were combined and considered simultaneously. Fractional area 
coverages of an inkjet printer for arbitrary requested spectra were 
computed by minimizing a single objective function: the weighted 
sum of CIEDE2000 color difference [15] and the normalized 
Euclidian distance in PQR: 

)IEDE2000Minimize(CObjFunc1 PQRk∆+= , (8) 
where k is a weighting that may be empirically fitted. 

The first term on the right hand side of Eq. (8) implies the 
absolute colorimetric matching based on the CIEDE2000 color 
difference while the second term represents spectral matching to 
minimize the spectral error between requested and response stimuli. 
Equation (8) can be globally utilized regardless of whether the 
requested stimuli are within the colorimetric or spectral response 
gamuts and is equivalent to minimizing spectral RMS error if the 
requested stimuli are within the colorimetric response gamut, 
because the Euclidian distance in PQR between a metameric pair is 
proportional to spectral RMS error [13].  It was found that k of 50 
performed well [13]. 

Experimental 
A Canon i9900 dye-based inkjet printer with a customized control 
driver was spectrally characterized for printer simulation.  This 
printer had the capability of an eight-ink set, but only six were 
utilized: cyan (C), magenta (M), yellow (Y), black (K), red (R), 
and green (G). All samples were printed on Canon Photo Paper 
Pro (PR-101) photo quality inkjet glossy paper. Spectral 
reflectance factor in the range between 400 and 700 nm were 
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measured and colorimetric values were calculated under illuminant 
D50 and for the CIE 1931 2o standard observer. 

Spectral reproduction for the CK-based and the unconstrained 
LabPQRs were evaluated and compared. This included round-trip 
transformation error independent of printer gamut limitations. In 
the round-trip evaluation, input spectral reflectances were 
converted to LabPQR and back to spectra, as illustrated in Fig. 1 
(a). Spectral reproduction quality was also evaluated with printer 
gamut limitations taken into account. Figure 1 (b) describes the 
steps for evaluating the spectral reproduction accuracies. This 
workflow comprised the transformation from spectra to LabPQR, 
spectral gamut mapping to find an appropriate set of fractional 
area coverages for the printer simulation and derivation through 
the spectral printer model of the spectral reflectances that would 
have been printed from those area coverages. To investigate 
dimensionality, the round-trip computational accuracies and the 
reproduction accuracies at several different numbers of dimensions 
were measured. For convenience, the five dimensional space will 
be referred to as LabPQ and the four dimensional space will be 
referred to as LabP. 
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Figure 1. Schematic diagrams for evaluating round-trip accuracies (a) and 
spectral reproduction accuracies (b). 

Datasets 
For the round-trip and the reproduction evaluations, a wide range 
of datasets were prepared: 
1. A set of 729 print patches using the CMYKRG inkjet printer, 

which were randomly distributed in the CIELAB color space 
(this set is referred to as Prints) 

2. GretagMacbeth ColorChecker (CC) 
3. GretagMacbeth ColorChecker DC (CCDC) 
4. Munsell Book of Color glossy edition containing 1600 

patches (Munsell) [16] 
5. A set of 120 DuPont paint chips by Vrhel et al. (DuPont)  

[17]-[18] 
6. A set of 170 object spectra including plants, human skin and 

hair by Vrhel et al. (Object) [17]-[18] 

Results and Discussion 

Building Cohen and Kappauf-based LabPQR 
Transforms 
CK-based LabPQR transforms consisting of the reconstruction 
matrices Tck and V were built for each dataset. As discussed above, 
Tck is derived referring to Cohen and Kappauf’s spectral 

decomposition, expressed in Eq. (2). Coefficients of Tck are 
plotted in Fig. 2 as a spectral graph.  
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Figure 2. Coefficients of the reconstruction matrix Tck for the CK-based 
LabPQR transform. 

Coefficients of the V matrix comprised of PQR bases for the 
Prints and the Munsell datasets were derived and plotted in Fig. 3. 
Although these datasets contained different types of sample 
populations, the curve shapes of the PQR bases were similar to one 
another. This could indicate device independence of LabPQR. 
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Figure 3. Coefficients of the V matrix or PQR bases of the CK-based 
LabPQRs for the Prints (left) and the Munsell (right) datasets. 

Building Unconstrained LabPQR Transforms 
The previously defined unconstrained LabPQR method was used 
to define completely device-customized LabPQR transforms. 
Coefficients of Tu for the Prints and the Munsell datasets are 
plotted in Fig. 4. Overall, the curve shapes were similar to one 
another except at longer wavelengths. Since Tu was determined 
using least square analysis on a particular dataset, the coefficients 
were dataset dependent.  
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Figure 4. Coefficients of the reconstruction matrices Tu for the unconstrained 
LabPQR transforms for the Prints (left) and the Munsell (right) datasets. 

The coefficients of the V matrix or PQR bases for the Prints and 
the Munsell datasets are plotted in Fig. 5. As expected, each curve 
shapes between the datasets did not match one another. Even for 
the P bases, the most significant eigenvectors, the curve shapes 
were somewhat different from one another, and large differences 
were obtained in the Q and R bases. Note that the P basis for the 
Munsell dataset is similar to those for the CK-based LabPQRs, 
shown above in Fig. 3. 
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Figure 5. Coefficients of the V matrix or PQR bases of the unconstrained 
LabPQRs of the Prints (left) and the Munsell (right) datasets. 

Round-Trip Accuracies 
Using the CK-based and the unconstrained LabPQR transforms of 
each dataset, the round-trip accuracies for each dataset were 
evaluated in terms of average spectral RMS error, summarized in 
Figs. 6 and 7. In the round-trip evaluation, input spectral 
reflectances were converted to LabPQR and back to spectra 
without reference to the spectral gamut of an output device.  
Figure 1 (a) illustrates the evaluation method. Error bars indicate 
90th percentile of the spectral RMS errors. In the figures, “All” 
represents the LabPQR trained from a merger of all the datasets.  
Since the transform from colorimetric coordinates of the CK-based 
approaches were independent of the training datasets, their overall 
accuracies were worse than the unconstrained approaches. 

As expected, in the unconstrained LabPQRs shown in Fig. 7, 
the best reconstruction was obtained when the training dataset was 
chosen for reconstructing its own LabPQR. That is, the LabPQR 
transform derived from the Prints was the most effective for 
verification of the Prints. It is interesting to note that in violation 
of intuition, for the CK-based LabPQRs shown in Fig. 6, some 
LabPQRs independent of the training dataset indicated better 
round-trip accuracies. For example, the LabPQR trained from the 
Munsell dataset was the best color space for the spectral 
reconstruction of the CC and the CCDC. 

For non-training set verification, CK-based approaches were 
able to provide smaller difference between the different LabPQRs.  
When the CCDC was a verification dataset, average spectral RMS 
errors for the LabPQRs trained from the Prints and the CCDC 
were 1.34 % and 1.29 %, respectively, while they were 1.56 % and 
0.92 % for the same combinations in the unconstrained LabPQRs.  
That is, the CK-based approach is superior for reconstructing 
spectra of unknown samples.  In order to improve the performance 
of the unconstrained LabPQR, it is necessary to train it on a wide 
range of datasets, such as “All”. 

Dimensionality of the Round-Trip 
Using the Munsell dataset as the verification, the round-trip 

accuracies at different numbers of dimensions were evaluated and 
are plotted in Fig. 8. In this evaluation, the CK-based and 
unconstrained LabPQRs built from the Prints and the Munsell 
datasets were utilized. The round-trip accuracies monotonically 
improved with increasing the number of dimensions.  In particular, 
improvement from the four- to the five-dimensional color space, 
LabP to LabPQ, was large whereas the improvement from the 
five- to the six-dimensional color space, LabPQ to LabPQR, was 
relatively small. Similar trends were seen for the same analysis 
using LabPQR spaces derived for the Prints database. In 
conclusion, the CK-based approach becomes less effective in a 

four dimensional space but there seems to be little advantage to a 
six-dimensional space over a five-dimensional one.  

The discussion above is important when considering the size 
of lookup tables (LUTs). Perhaps, the results might point the way 
toward abandoning the CK-based approach in order to generate 
smaller size of LUTs. The unconstrained approach might be 
appropriate in a lower-dimensional ICS such as a four-dimensional 
LabP. 
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Figure 6. Round-trip accuracies of interaction between each dataset and 
each CK-based LabPQR in terms of average spectral RMS error. Error bars 
indicate 90th percentile of the spectral RMS errors. 
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Figure 7. Round-trip accuracies of the interaction between each dataset and 
each unconstrained LabPQR in terms of average spectral RMS error. 
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Figure 8. Round-trip accuracies of the Munsell dataset with the CK-based 
and unconstrained LabPQRs trained from either the Prints or the Munsell 
dataset at different dimensional LabPQRs. 
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Spectral Reproduction Accuracies 
In the evaluation of the round-trip accuracies, it was assumed that 
all requested LabPQR values were reproducible. However, it is 
common that the response gamut for an output device does not 
cover all arbitrarily requested LabPQR values, so spectral gamut 
mapping is necessary to choose the appropriate fractional area 
coverage, using the objective function [Eq. (8)]. 

Shown in Fig. 9 are the spectral reproduction accuracies for 
each dataset, with respect to average spectral RMS errors. In this 
evaluation, three different datasets were used for building the CK-
based and the unconstrained LabPQRs: the Prints, “Identical”, and 
“All”. In case of “Identical”, each LabPQR was built using the 
training dataset as its verification dataset. “All” is a merger of all 
the six datasets, as defined above. Surprisingly, for all the 
verification datasets, there was no significant difference between 
the CK-based and unconstrained LabPQRs although there had 
been disagreement between them in the round-trip evaluations. 
Similarly, there was no significant difference between results when 
comparing the datasets used for training. These results may reveal 
that a single CK-based LabPQR could be universally acceptable 
within the spectral color management for a six-dimensional 
LabPQR.  Consequently, there may be no necessity to customize 
each LabPQR transform to each output device, if it were the case 
that a six dimensional ICS is acceptable. 
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Figure 9. Average spectral RMS errors of each dataset in LabPQR. Three 
different datasets were used for building LabPQRs: the Prints, the identical 
dataset to the verification, and a merger of all the six datasets. 

Another interesting thing is that the reproduction accuracies 
for the Prints were superior to their reconstruction accuracies 
within the round-trip. The reproduction process including the 
spectral gamut mapping could cancel a lack of the spectral 
estimation accuracy caused by a spectra-to-LabPQR transform 
because the spectra synthesized by the spectral printer model were 
more similar to the original 

Dimensionality of the Spectral Reproduction 
The spectral reproduction accuracies at the different numbers 

of dimensions were evaluated. In addition to the dimensionality 
discussed above, a full 31-dimensional (Reflectance) approach and 
a colorimetric-only mapping (Lab) approach were examined. The 
Reflectance and the Lab approaches are included to show the best 
accuracies in terms of spectral and colorimetric-only matching, 
respectively. 

For the Reflectance approach, instead of minimizing Eq. (8), 
which is based on minimizing a weighted PQR difference, an 

alternative objective function [Eq. (9)] minimizes a weighted 
spectral RMS difference: 

) sRMS 2000CIEDE(minimize2ObjFunc k+= , (9) 
where sRMS is the spectral RMS error.  For the Lab approach, Eq. 
(8) was minimized where k was set to zero. 

The resultant accuracies for the Munsell dataset are 
summarized in Figs. 10 and 11. The predicted spectra were 
paramerically corrected [11] such that a perfect match was 
obtained under illuminant D50. A CIEDE2000 color difference 
was calculated for illuminant A and used as a metameric index 
(MI) [8], shown in Fig. 11.  
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Figure 10. Average spectral RMS errors for the Munsell dataset at different 
dimensional ICSs. Three different datasets were used for building LabPQRs: 
the Prints, the Munsell, and a merger of all the six datasets. 
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Figure 11. Average MIs under illuminant A for the Munsell dataset at 
different dimensional ICSs. 

Interestingly, the spectral differences between LabP and 
LabPQR become smaller than those of the round-trip in Fig. 8.  
This indicates that it is not necessary to use a higher dimensional 
ICS.  Because the CMYKRG printer is not capable of reproducing 
any arbitrary spectral request perfectly, the ICS may have some 
level of spectral imprecision that can be masked by output device 
spectral gamut limitations. The unconstrained approaches in 
LabPQ were superior to the CK-based LabPQ ones while 
unconstrained and CK-based were equivalent in LabP and 
LabPQR. Similar resultant data were obtained for the other 
datasets. 

This was a reproduction exercise with a limited spectral 
output gamut. Thus, even the reflectance approach had to manage 
error. The Reflectance approach did show the lowest spectral RMS, 
but their MIs were not better than those found in LabPQR or 
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unconstrained LabPQ. Minimizing spectral difference leads to 
smaller RMS, but does not guarantee achievement of the best MI 
for arbitrary illuminants [6]. Overall, a five-dimensional 
unconstrained approach was best when considering dimensionality 
reduction for ICS. 

The sample pairs with the worst spectral RMS error (10.61 
%) and the worst MI (3.17) in LabPQ are shown in Fig. 12. The 
spectral reconstruction at longer wavelengths, where the illuminant 
metamerism from illuminant D50 to A was sensitive, was poor and 
the reflectance factor of the reproduction was higher than that of 
the measured samples. 
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Figure 12. Comparisons of measured and reproduced spectra with the worst 
spectral RMS error (upper) and the worst MI (lower). 

Conclusions 
Interim connection spaces based spectral decomposition have been 
explored. Variations of LabPQR were evaluated with respect to 
how the transformation to spectra is derived as well as the number 
of dimensions necessary for spectral color management.  Using 
Cohen and Kappauf’s spectral decomposition within the LabPQR 
definition was compared with the unconstrained approach 
described by Derhak and Rosen. For several datasets, after the 
introduction of spectral gamut mapping, the Cohen and Kappauf-
based LabPQR was shown to perform as well as unconstrained 
LabPQR. On the other hand, for LabPQR of lower dimensions, the 
unconstrained approach to building LabPQR transforms showed 
itself superior. Also, it was found that the five-dimensional 
unconstrained approach was sufficient to achieve the equivalent 
levels of the performance to a full 31-dimensional approach for an 
output device with a limited spectral gamut.  

A future direction of this study will be to produce a lookup-
table (LUT) based on LabPQR to test actual reproduction 
accuracies.  When attempting to produce the LUT, fewer input 
dimensions is obviously desirable for reducing memory size and 
computational cost of interpolation. Exploring the tradeoff 
between the LUT size and the reproduction accuracies will 
continue to be an important spectral color management issue. 
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