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Abstract
CIECAM02 has gained significant interest within the field of

color management for its potential in achieving uniform percep-
tual color space. However, researchers have identified difficulties
in adopting CIECAM02 directly in an ICC workflow as the profile
connection space, PCS, because of the nonlinear post-adaptation
response functions as well as the perceptual characteristic func-
tions. In this paper, we will address the slight inconsistency in the
CIECAM02 derivation under complete illumination adaptation,
and a minimized modification on the Hunt-Pointer-Estevez trans-
formation is derived to overcome this difficulty. Furthermore, a
robust computation procedure will be suggested to alleviate cer-
tain singularities occurring in the original numerical implemen-
tation. Finally, we will verify our proposed implementation and
compare with the standard procedure within the scheme of the
ICC workflow.

Introduction
A color appearance model correctly predicting all of the per-

ceptual color attributes, such as hue, brightness, and chroma, is
still being actively pursued by many scientists and engineers to
be able to better communicate visual perception with one another
[1]. With the current rapid advances in image capture and dis-
play technologies, such a model is even more critical to ensure
the inter-operability among all equipment. The current interna-
tional standard supported by the International Color Consortium,
ICC, is the latest effort to standardize the color communication
specification [2]. In the ICC specification, a color space, denoted
as the Profile Connection Space, PCS, is selected from CIELAB
or XYZ, and each imaging system is described by a color profile in
the PCS. The PCS is responsible to connect two different imaging
systems: one input device and one output device.

Various color appearance models have been proposed over
the years, such as CIELAB, the Hunt model, the RLAB model, and
the latest CIECAM97s and CIECAM02 models [1]. CIECAM02
is considered to successfully accomplish two objectives: ease of
use and offering comprehensive predictions of all attributes of
color perception [3]. One advantage of adopting CIECAM02 over
CIELAB is that the predicted hue angle is better aligned with the
perceived hue than that predicted by CIELAB, especially in the
blue color region [4]. However, because of the adopted nonlin-
ear post-adaptation function and nonrational definitions of per-
ceived color attributes, researchers have identified several scenar-
ios where the forward and backward algorithms suggested by the
CIECAM02 will create numerical irregularities [5, 6]. As a result,
special care has to be taken before adopting CIECAM02 directly
into the future ICC workflow [7, 8].

In this paper, we will address two issues encountered when
adopting CIECAM02 in an ICC workflow: white point under the

assumption of complete illumination adaptation, and a numeri-
cally robust backward CIECAM02 model. First, although the
CIECAM02 suggests a formula to estimate the degree of adapta-
tion, D, complete illumination adaptation is usually the preferred
choice in the current image reproduction workflow. However,
under the current Hunt-Pointer-Estevez transformation defined in
CIECAM02, the adapted white point under complete illumination
adaptation assumption will not result in the estimated chroma be-
ing zero, even though it is very small. Impose the aforementioned
constrain of zero chroma, and we will suggest a modified formula-
tion of the Hunt-Pointer-Estevez transformation matrix with min-
imized impact as a simple quadratic optimization with linear con-
straints. However, the standard CIECAM02 inverse model has a
numerical singularity when converting a point with chroma being
zero to XYZ. Although this numerical singularity can be avoided
by forcing a = b = 0 at C = 0, there might still exist difficulties
for chroma being very small. This problem is addressed by rear-
ranging the sequence of the backward model.

It is possible to rearrange the sequence of the CIECAM02
backward model without computing a,b, and obtain R

′
a,G

′
a,B

′
a

directly via solving a system of linear equations. We will show
that, although mathematically equivalent, this algorithm is more
robust numerically by adopting the truncated Singular Value De-
composition algorithm, TSVD, in solving the 3 × 3 linear sys-
tem including the colors with zero chroma [9]. To verify if it
is possible to extend the current PCS in an ICC workflow to in-
clude CIECAM02, we verify our proposed algorithm in two dif-
ferent routes: CIELAB(XYZ) → CIECAM02 → CIELAB(XYZ)
and CIECAM02→XY Z(CIELAB)→CIECAM02. In both cases,
the initial color spaces are sampled uniformly and form two three-
dimensional cubic grids. The first case starts from the set of non-
imaginary colors and identifies the necessary and sufficient con-
ditions for the validity of the CIECAM02 numerical model, but
the second case will test the robustness of an inverse model with
respect to imaginary colors. We will compare two output gamuts
via the standard algorithm and our proposed algorithm.

Proposed Implementation

The chromatic adaptation algorithm adopted in the
CIECAM02 is a generalized form of the von Kries transforma-
tion. The tristimulus values are first mapped to RGB responses
using the matrix transformation, MCAT02. Denote the cone re-
sponses as R,G,B, and the degree of adaptation as D. It can be
easily shown that the RGB responses after chromatic adaptation,
Rcw,Gcw,Bcw, of the adapted white point under complete illumi-
nation adaptation assumption, i.e. D = 1, is (100,100,100). The
adapted tristimulus values are then mapped to the optimized cone
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responses via the Hunt-Pointer-Estevez matrix transformation:

MHPE =

⎛
⎝ 0.38971 0.68898 −0.07868

−0.22981 1.18340 0.04641
0 0 1

⎞
⎠ . (1)

The resulting adapted cone responses of the adapted white point,
R′

w,G′
w,B′

w is (100.00001,100,100). This will result in nonzero
opponent-type responses, a and b, of which chroma is nonzero.
Since MHPE optimizes the transformation from tristimulus values
to cone responses, our objective is to minimize the modification
of MHPE , denoted as δMHPE , while satisfying the constraint of
zero chroma. It is obvious that the last two rows of δMHPE are
zeros; thus, we can postulate δMHPE to be the following:

δMHPE =

⎛
⎝ k1 k2 k3

0 0 0
0 0 0

⎞
⎠ . (2)

Adopting ‖δMHPE‖2 = (k2
1 + k2

2 + k2
3) as the cost function quan-

tifying the amount of modification, the the modification of MHPE
can be reformulated as a simple quadratic programming problem
as follows:

min k2
1 +k2

2 +k2
3 (3)

s.t. k1 +k2 +k3 = 0.00001

k1,k2,k3 ≥ 0.

The solution is ( 10−5

3 , 10−5

3 , 10−5

3 ). By limiting to one extra deci-
mal digit, we propose to modify the Hunt-Pointer-Estevez matrix
transformation to be the following:

M̄HPE =

⎛
⎝ 0.389707 0.688977 −0.078684

−0.22981 1.18340 0.04641
0 0 1

⎞
⎠ . (4)

Note that M̄HPE → MHPE if they are rounded to the fifth decimal
point, and (a,b) = (0,0) = (ac,bc) for the adapted white point
under complete illumination adaptation if M̄HPE is adopted in the
forward CIECAM02 model.

One numerical singularity that exists in the standard
CIECAM02 backward model is that it is necessary to compute
the parameter, P1, as follows:

t = (
C√

J/100(1.64−0.29n)0.73
)10/9 (5)

P1 =
(50000/13)NcNcbet

t
, (6)

where C and J are chroma and lightness respectively. As a result,
if C = 0, P1 → ∞, and it becomes a singular point [5]. Instead of
first solving a and b as suggested by the standard CIECAM02 in-
verse model, we propose to solve R′

a,G
′
a,B

′
a directly as explained

below. Assuming J, C and h are known, we can first compute the
brightness, A, where A = Aw(J/100)1/cz . Note that n, Nc, Ncb ,
c and z are internal parameters specified in CIECAM02, and they
are assumed to be known a priori [1, 3]. Thus, we can construct
the first linear equation:

2R′
a +G′

a +
1

20
B′

a =
A

Nbb
+0.305. (7)

Furthermore, because
√

a2 +b2 = asec(h) = bcsc(h), we can for-
mulate the second linear equation as follows:

t(R′
a +G′

a +
21
20

B′
a) = ((50000/13)NcNcbet sec(h))a

= P2(R′
a −

12
11

G′
a +

1
11

B′
a) (8)

= ((50000/13)NcNcbet csc(h))b

= P̄2(R′
a +G′

a −2B′
a). (9)

At last, based on tan(h) = b
a , the last equation can be easily con-

structed:

tan(h)(R′
a −

12
11

G′
a +

1
11

B′
a) =

1
9
(R′

a +G′
a −2B′

a) (10)

cot(h)
9

(R′
a +G′

a −2B′
a) = (R′

a −
12
11

G′
a +

1
11

B′
a). (11)

Only one equation in the last two cases is selected depending
on the relationship between |sin(h)| and |cos(h)|. If |sin(h)| ≤
|cos(h)|, tan(h) and sec(h) are chosen. Otherwise, cot(h) and
csc(h) are selected. As a result, a 3 × 3 linear system with
R′

a,G
′
a,B

′
a being three unknowns can be constructed, and solved

via the TSVD algorithm [9]. In the case of C = 0, the linear system
can be simplified to be following:

⎡
⎣ 2 1 1/20

1 −12/11 1/11
1/9 1/9 1/9

⎤
⎦
⎡
⎣ R′

a
G′

a
B′

a

⎤
⎦=

⎡
⎣

A
Nbb

+0.305
0
0

⎤
⎦ .(12)

The singular values of the 3×3 matrix are 2.1, 1.39 and 0.11, and
its condition number is 20.9. This indicates that it is a well-posed
least square problem, and can be solved reliably. As a result, the
singularity caused by the standard CIECAM02 inverse model in
computing P1 can be avoided by adopting our proposed approach.
The other advantage of solving a least square problem is that, if
the singular values of the resulting 3×3 matrix become too small,
the corresponding singular vectors can be treated as the null space
and removed from the solution.

Numerical Experiment
We propose two possibilities for including CIECAM02 into

an ICC workflow:

Case 1 PCS remains CIELAB space(or XYZ).
Case 2 CIECAM02 becomes one of the choices for PCS.

In the first case, CIECAM02 is only used to perform gamut map-
ping, but the final realization is represented in the CIELAB space
(or XYZ). Thus, it is necessary to verify the color space trans-
formation from CIELAB to CIECAM02 and back to CIELAB.
In the second case, the CIECAM02 color space is sampled by
a three-dimensional grid similar to the current ICC PCS imple-
mentation. Thus, it is also imperative to identify the region of
physically feasible colors within the sampling grid. Moreover,
the current profile accuracy estimation is obtained by comparing
the color difference between one set of samples initialized in the
PCS space and its corresponding points in the same PCS after one
round of color mapping. As a result, we will verify another color
transformation from CIECAM02 to XYZ(CIELAB) and back to
CIECAM02. M̄HPE is adopted in both experiments. Moreover,
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the symmetric extension of the post-adaptation nonlinearity as
suggested by Moroney et.al. is adopted in this experiment [3]:

f (x) = 0.1+ sign(x)
400( FL |x|

100 )0.42

27.13+( FL |x|
100 )0.42

(13)

, where x ∈ {R′,G′,B′}. Therefore, we can derive the range:

−400 < ( f (x)−0.1) < 400. (14)

Case 1: CIELAB →CIECAM02 →CIELAB
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Figure 1. Chromaticity diagram of Case 1 color transformation

Various papers have been published addressing this approach
[5, 7, 8]. The CIELAB color space is first projected to the non-
negative XYZ quadrant before mapping to CIEAM02. The nec-
essary condition for the CIECAM02 forward model to succeed is
that the achromatic response A is greater or equal to zero, where
A = (2R′

a +G′
a + 1

20 B′
a −0.305)Nbb . The sufficient condition for

A ≥ 0 is

min{R′
a,G

′
a,B

′
a} ≥ 0.1 ⇔ min{R′,G′,B′} ≥ 0

⇔ M̄HPE

⎛
⎝ X

Y
Z

⎞
⎠≥ 0. (15)

We can construct the sufficient condition for valid CIECAM02
forward transformation using M̄HPE in the chromaticity diagram
as in [5, 6], and they can be represented as the following set of
linear inequalities:

0.468391x+0.767661y ≥ 0.078684

−0.27662x+1.13699y ≥ −0.04641 (16)

x+y ≤ 1

x ≥ 0 , y ≥ 0.

They are equivalent to the analysis offered by Li and Luo except
the slight difference at the first inequality because of the modi-
fied first row of the Hunt-Pointer-Estevez matrix [5]. Note that
there exists samples for which A > 0 but min{R′,G′,B′} < 0. Be-
cause of the adopted symmetric extension as Equation (13), the
forward and backward CIECAM02 transformation are valid at
these points.
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Figure 2. CIELAB 3D graph of Case 1 color transformation

Our numerical experiment indicates that both the standard
CIECAM02 inverse model and our proposed model work, which
means that no singular value truncation is needed in our pro-
posed inverse model under this scenario. Moreover, the max-
imal roundtrip error in ∆E76 is 1.7 × 10−4, which is slightly
smaller than those reported in [5]. Figure 1 shows the chro-
maticity diagram of the chromaticity locus, chromaticity regions
where A < 0, A ≥ 0 but min{R′,G′,B′} < 0, and the border where
R′ = G′ = B′ = 0. Figure 2 is the same result represented in the
CIELAB color space. It is obvious that the entire chromaticity
locus can be safely represented in the CIECAM02 color space
even without the symmetric extension of the post-adaptation non-
linearity. This conclusion agrees with Li and Luo [5], but differs
from that of Tastl et. al [7]. The four active constraints in (16)
form a convex set denoted as Sc. Thus, any convex set with ver-
tices inside Sc is contained in Sc. Therefore, we can conclude
that any RGB color space with all primaries satisfying the set of
linear inequality constraint (16) can be accurately represented in
CIECAM02 color space . At last, the proposed reference media
gamut as shown in Figure 1 also lies entirely within Sc [2, 7].

To verify the effect of singular value truncation, we adopt
our TSVD-based inverse model with a lower threshold 0.1 for the
computed singular value, and its result is shown in Figure 3. We
can see that the singular value truncation algorithm automatically
handles all imaginary colors within the CIECAM02 color space
with A < 0. Figure 4 shows that same effect in the CIELAB 3D
color space.

Case 2: CIECAM02 → XYZ(CIELAB) →CIECAM02
Unlike the first case where the unrealizable CIELAB points

are projected to the nonnegative XYZ quadrant before applying
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Figure 3. Proposed TSVD inverse model effect in Chromaticity diagram

the CIECAM02 forward transformation as suggested in the ICC
specification [2], the entire CIECAM02 color cubic is mapped
to XYZ color space before the projection can take place. Thus,
this process will verify how the standard CIECAM02 inverse
model and our proposed model handle imaginary colors. One
constraint which is inactive in the first case is the range of the post-
adaptation nonlinear response as listed in Equation (14). There-
fore, a hard clipping function with the upper limit being 399 is
imposed on |R′

a|, |G′
a|, and |B′

a|. Furthermore, when the standard
CIECAM02 inverse model is used, the derived a and b for any
point with chroma C < 0.01 will be set automatically to be zero to
avoid numerical singularities. When our proposed inverse model
is applied, a lower threshold of 0.1 is imposed on the singular
values of the derived 3×3 matrix.

We first compare the computed {R′
a,G

′
a,B

′
a} from the stan-

dard inverse model and the TSVD model. The range of the
standard inverse model is from {−81.6,−1637.9,−10382.1}
to{1081.6,108.5,3806.7}, and that of the TSVD inverse
model is from {−3.6,−5.0,−53.6} to {14.4,15.7,77.5}, where
the corresponding value of the adapted white point is
{13.05,13.05,13.05}. It is obvious that the results reported by the
standard algorithm are too large. Figure 5 and 6 demonstrate the
result of the roundtrip color mapping. The TSVD inverse model
automatically controls the output of the inverse function within a
reasonable range while the standard inverse model is less robust
against imaginary colors within the initial 3D grid points.

Conclusion
A constraint is first imposed on the CIECAM02 color ap-

pearance model such that the adapted white point should be per-
ceived with zero chroma under complete illumination adapta-
tion. Consequently, a modified Hunt-Pointer-Estevez matrix is
derived in Equation (4). Furthermore, we propose a robust back-
ward numerical implementation based on the TSVD algorithm,
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Figure 4. Proposed TSVD inverse model effect in the CIELAB space
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Figure 5. Standard inverse model roundtrip effect in CIECAM02

which addresses the potential numerical instability of the stan-
dard backward model. Two numerical experiments in the pre-
vious section indicate that both backward model implementa-
tions achieve high round-trip accuracy under the first CIELAB →
CIECAM02 → CIELAB experiment, where the CIELAB color
space is first mapped to the nonnegative quadrant of XYZ color
space. However, the standard backward model suffers numerical
instability in the second numerical experiment, CIECAM02 →
CIELAB → CIECAM02, as shown in Figure 5, where unnatu-
rally high lightness J results from this round-trip experiment. The
TSVD-based backward model automatically controls the output
within a reasonable range as shown in Figure 6 where the lower
bound of the singular values is set to be 0.1. The numerical sin-
gularity at chroma of zero in the standard backward numerical
algorithm is also avoided.
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