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Abstract 
The use of a digital image for assessing texture appearance 

was investigated. Since there are still limitations to reproduce 
texture appearance of a physical object on display devices using a 
digital image such as resolution, physical size and viewing 
distance, the influences of the changes of the conditions were 
examined. In the present work, we focus on coarseness of a 
metallic paint coating. By comparing with the scaled perceptual 
coarseness difference of the metallic paint coating panels with that 
of their reproduced images assessed in several different conditions, 
the results showed that the perceptual coarseness difference could 
be assessed from displayed images. Although the absolute 
coarseness appearance was difficult to be reproduced, it was found 
that the coarseness difference did not influenced by the slight 
changes of the conditions. Also, performance of the computational 
coarseness model [1] developed for predicting the perceptual 
coarseness from an image was verified by comparing with the 
perceptual coarseness obtained by the visual assessments. 

Introduction 
While the digitisation of information or the use of digital 

images to represent physical objects for product control and 
communication is not new in many industries, it is not trivial to 
measure information or reproduce a digital image of their 
appearance. Many studies have been performed for estimating 
colour appearance under cross-media viewing conditions. 
However, these studies mostly are limited to uniform surfaces 
[2,3]. There are still many difficulties to accomplish cross-media 
reproductions especially for complex pictorial images or surface 
textures, because of limitations of the spatial resolution or optical 
system of devices technologies. As characterised by the 
modulation transfer function (MTF) of the optical system, imaging 
devices never achieve perfect reproductions. Also, even when a 
high resolution digital camera can capture fine details of texture, 
the resolutions of display devices are typically not high enough for 
displaying a digital image of an object with the same physical size. 
One common practice is to display a larger image and let it be 
viewed from further away. However, it was found that there is a 
change of appearance due to varying the physical image size and 
the viewing distance as reported by Johnson et al. [4]. Obviously, 
for objects larger than the physical size of the display device, it is 
impossible to reproduce a digital image with the same physical 
size as the object. However, it is a great advantage to be able to 
measure appearance from an image, and to visually assess the 
appearance of a representative image rather than a physical object.  

The aim of this study is to investigate the use of digital 
images for visually assessing the texture difference relative to what 

we can see on the same pair of physical samples. Since it is 
impossible to reproduce the image having identical appearance to 
an object, because of reasons just mentioned, and since in practice 
it is not easy to control viewing conditions except when assessing 
in the laboratories, the influences of the changes in conditions (size 
and distance) to the texture difference were thus investigated. In 
this study, we focus on the coarseness appearance of metallic paint 
coating panels. Visual assessments were carried out to compare the 
perceptual coarseness difference on metallic panels (physical 
objects) with that of the images displayed on a monitor. We also 
investigated whether the perceptual coarseness difference is 
affected by the viewing distance or the size. In addition, the 
performance of the computational model [1] developed for 
predicting the perceptual coarseness from an image was evaluated 
using the visual results accumulated here. 

Visual Assessment: Physical Sample 

Sample Preparation: Physical Samples 
Metallic paint coating panels (physical samples) with varying 

coarseness levels and colours were prepared. Coarseness variations 
of the metallic paints were caused by the spatial distributions of 
aluminum flakes of different sizes. Totally, there were 156 panels 
including 6 grey, 50 purple, 50 green and 50 blue panels.  

Coarseness Scaling: Physical Sample 
Visual assessments were carried out to scale the perceptual 

coarseness difference of physical samples. A total of 10 observers 
(4 female and 6 male) with normal colour vision participated in the 
experiment. In this study, a specially designed viewing cabinet as 
shown in Figure 1 was used to present the samples to an observer. 
It incorporates diffuse light from two bottom sides (a CIE 
illuminant D65 simulator) and a flat base to present samples [5]. 
The reason of using the diffuse light is to avoid any specular 
reflection or gloss of the metallic paints, which could disturb the 
coarseness appearance. Each observer looked down onto the 
samples from the viewing window in Figure 1. The distance from 
the observer’s eye to the sample was about 54 cm. Categorical 
judgment method [6] was applied to scale the perceived coarseness 
difference. Two metallic paint panels were presented for each trial 
in the viewing cabinet as illustrated in Figure 1. One was a 
reference sample and the other was a test sample. A grey sample 
with a middle coarseness level was used as the reference sample. 
Each observer was asked to assign a category for a test sample 
comparing with the reference sample, whose category was 5, 
according to the observer’s perception in terms of coarseness on a 
1-9 scale as shown in Table 1. All samples were presented in a 
random order. Each observer carried out the assessment twice. A 
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total of 3100 (10 observers × 2 sessions × 155 samples) categorical 
judgments were accumulated.  
 

Figure 1. Schematic diagram of a Viewing Cabinet (left). Samples are placed 
on the base. Two light sources are positioned at the 2 bottom corners at 
each side and both emit light to the walls. The top corners have curved 
surfaces to reflect light uniformly onto the sample. An observer looked down 
the sample from the viewing window. An illustration of samples’ arrangement 
and an observer’s viewing field (right). 

Table 1: 1-9 categories used for the visual assessment. 

Category 1 Extremely Fine 

Category 2 Very much Fine 

Category 3 Moderately Fine 

Category 4 Slightly Fine 

Category 5 Reference Sample 

Category 6 Slightly Coarse 

Category 7 Moderately Coarse 

Category 8 Very much Coarse 

Category 9 Extremely Coarse 

 

Visual Assessment: Image Sample 

Sample Preparation: Image Samples 
Digital images of the physical samples were captured via a 

digital camera, Nikon D1X, in the same viewing cabinet used for 
presenting the physical sample to observer as shown in Figure 1. 
The camera was located at the viewing window on the top of the 
cabinet in Figure 1. Then, the images were reproduced for a LCD 
monitor, Eizo ColorEdge CG220, whose chromaticity and the 
white point of the monitor were set to D65 and 100 cd/m2 through 
the transformations from camera device-dependent values to 
device-independent values and finally to monitor device-dependent 
values. Because of limitation of imaging devices to reproduce the 
appearance of the physical sample with the same physical size, the 
appropriate size and resolution of the image samples were selected 
by the visual assessment. A flowchart given in Figure 2 illustrates 

the reproduction procedures. In the following subsections, a 
camera, a monitor characterisation and an image selection stage 
are introduced.  

 

 
 
Figure 2. The work flow for reproducing an image sample from a physical 
sample. 

Camera Characterisation 
A camera characterisation model, i.e. a polynomial model 

using the least squares method [7] as given in Equation (1) was 
used to obtain XYZ values (device-independent values) of each 
pixel of each sample image form the camera RGB values. 

Act =  (1) 

 
where A is the transform matrix, c contains the camera RGB 
values and t contains the XYZ values. For a linear transform, A is 
a 3×3 matrix, c and t are both 3×1 matrices. In this study a variety 
of linear and nonlinear transforms (up to fourth order) were 
evaluated. Usually, a standard chart such as the GretagMacbeth 
Color Checker Digital Chart or a set of Munsell colours is used as 
training data to determine the coefficients in the transform matrix. 
Since surface material differences could affect the performance of 
the camera characterisation model, a transform matrix derived 
from a chart which has a matt surface may not be applicable for 
other samples having a glossy surface such as metallic paints 
coatings. Therefore, the average RGB values of the sample images 
and the corresponding XYZ values of the physical samples 
measured by a tele-spectroradiometer (TSR) were used as training 
data to derive the transform matrix. The viewing cabinet in Figure 
1 was also used to measure samples by the TSR. Therefore, the 
image capturing and measuring conditions were consistent with the 
visual assessment using the physical samples, because any viewing 
geometry differences could seriously affect the appearance of the 
metallic paint coatings. The model was tested using the leave-one-
out method (use one sample as a test and the others for deriving 
the model as training data), acceptable model performance was 
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obtained. We found an average colour difference, ∆E*ab, of 0.55 
with a maximum of 1.73. 

Monitor Characterisation  
After the transform from camera RGB values to XYZ values, 

they were encoded into monitor RGB values using a monitor 
characterisation model. The monitor characterisation model 
developed by Day et al. [8] was applied. This model consists of 
three one-dimensional look-up tables (LUTs) for the 
transformation from digital counts to scalars: sR sG and sB, and a 
transformation from the scalars to XYZ values using a primary 
matrix as given in Equation (2). 
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where X,Y,Z are the tristimulus values, the subscripts “r,g,b”,  
“max” and “k” define each channel, its maximum output and the 
black-level output respectively. Since the channel independency of 
this monitor was not very satisfactory, the 1D-LUTs were obtained 
from a 36-steps grey scale, equally spaced in digital counts from 0-
255. The 3×3 primary matrix in Equation 2 was optimised by 
minimising the average ∆E*ab for a set of training colours 
including 1017 colours. The test errors between predicted and 
measured XYZ values for a set of 155 test colours were ∆E*ab of 
0.75 (average) and 2.09 (maximum). This model showed a better 
performance than polynomial [9] and GOG [10] models. 

Image Selection 
Although the resolution of the camera is high enough to 

capture the fine detail, the resolution of the display devices was 
much lower. In order to display the image sample with the same 
size as the physical sample (8 × 8 cm2), the image had to be 
captured with a lower resolution. This resulted in much smaller 
perceptual coarseness differences between the image samples 
comparing with those of the physical samples due to the loss of the 
texture detail. Therefore, the images were captured with higher 
resolution to obtain details as much as possible. This resulted in an 
image size of 21 × 21 cm2 on the monitor and a viewing distance 
of 140 cm, in order to keep the same angular display size of 8.5° 
for both physical samples’ and image samples’ experimental 
conditions (specification of this viewing geometry is given in 
Table 2 as Condition 1). It was found that the coarseness 
appearance in Condition 1 did not perfectly agree with that of the 
physical sample. This is caused by the loss of detail in the 
imaging-forming system (both camera and monitor) as 
characterised by the MTF. But also because the study by Johnson 
et al. [4] showed a disagreement in perceptual appearance of 
images having the same retinal size if the viewing distances are 
different. But how does this affect if an observer can assess the 
coarseness difference of the images comparing with the coarseness 

difference between the physical samples? To investigate this, the 
coarseness difference was visually assessed using Condition 1.  

There is a problem for Condition 1 that the coarseness 
appearance and the coarseness difference were much smaller than 
the physical samples. In common practice, we usually come close 
to an object to see the details. Therefore, to achieve image samples 
having an equivalent perceptual coarseness difference to the 
physical samples, observers were asked to assess the images at 
varying viewing distances as shown in Table 2. In other words, the 
images looked magnified to the observers when the viewing 
distance decreased, although the image itself did not change. Since 
the angular size of the displayed image was kept constant under all 
the conditions, the actual image size was made smaller by showing 
only part of the full image as illustrated in Figure 3. The observer 
was asked to scale the coarseness difference between the two 
image samples (a fine and a coarse grey colour image sample) 
comparing with that of the corresponding physical samples 
presented in the viewing cabinet as shown in Figure 3 (different 
viewing cabinet from the one used for coarseness scaling for the 
physical samples). The coarseness difference of the two image 
samples was estimated under the nine viewing conditions (Table 2) 
comparing with the coarseness different of the physical samples 
(assigned as grade 5) using the magnitude estimation method [6]. 
The viewing condition for the physical samples presented in a 
viewing cabinet had a sample size of 8 × 8 cm2 and the viewing 
distance of 54 cm, and the luminance level was adjusted to be 
same as that of the monitor’s white point (100cd/m2). Geometric 
mean of each observer’s data was used as a measure for each 
condition. The result is given in Figure 4. It can be seen that the 
closest match was obtained under Condition 6, although the 
differences obtained for different conditions are hardly significant.  

 
Figure 3. Arrangement of two physical samples in the viewing cabinet and 
two image samples displayed on the monitor (top). Example of the image 
samples for Condition 1 and Condition 6 (bottom) respectively. 
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Table 2: The conditions for the visual assessments. 

Conditio
n 

Magnifyin
g 

Ratio 
(%) 

Image 
size 

(pixel) 

Imag
e 

size 
(cm) 

Viewing 
Distanc

e 
(cm) 

Angle 
display 

size 
(degree) 

1 100 832 x 832 20.7 140 8.5 

2 117 714 x 714 17.8 120 8.5 

3 140 595 x 595 14.8 100 8.5 

4 175 476 x 476 11.9 80 8.5 

5 200 417 x 417 10.4 70 8.5 

6 233 357 x 357 8.9 60 8.5 

7 280 298 x 298 7.4 50 8.5 

8 350 238 x 238 5.9 40 8.5 

9 466 179 x 179 4.4 30 8.5 

 
 Figure 4. Mean visual coarseness difference between under the nine 
condition comparing studied. Coarseness difference 5 indicates that a pair o 
the image samples displayed on the monitor has a equivalent coarseness 
difference to the physical sample pair presented in the viewing cabinet. 

Coarseness Scaling: Image Sample 
According to the result from the image selection, the 

perceptual coarseness was scaled using Condition 6 which showed 
the closest perceptual coarseness difference between image 
samples to the physical samples. And also, the visual assessment 
was conducted using Condition 1 (no magnified image and the 
equivalent viewing condition with the assessment using the 
physical samples), in order to reveal the influence of the changes 
in the viewing conditions. For both conditions, a 1-9 scale 
categorical judgment was applied just as for the physical samples. 
For the assessment using Condition 6, all 156 image samples were 
assessed by 14 observers (6 female and 8 male). For the 
assessment using Condition 1, only a subset including 66 image 
samples was assessed by 10 observers (6 female and 4 male). Each 
observer repeated the assessment twice for further investigation of 
observers’ repeatability. 

Comparison of Visual Results 
The arithmetic mean of the data from all observers was used 

as a measure of the perceptual coarseness for each sample. The 
repeatability (intra-observer agreement) was investigated by 
calculating the coefficient of determination (R-squared value) 
between the results of each observer’s first session and second 
session. Observer accuracy (inter-observer agreement) was also 

reported between each observer’s data and the average of all 
observers’ data in terms of the R-squared value. The repeatability 
and accuracy results are summarised in Table 3. The result of the 
assessment in the viewing cabinet for the physical samples, using 
the monitor at Condition 6 and Condition 1 are labelled as 
“Physical sample”, “Condition 6” and “Condition 1”, respectively. 
It can be seen that the repeatability and accuracy results for all the 
samples are fairly similar in the conditions studied. This indicates 
that observers assess the coarseness difference equally accurate 
under these three conditions, although the absolute appearances of 
the coarseness under these conditions are different, i.e. there is 
much smaller perceived coarseness difference under Condition 1 
than that under Condition 6 or using the viewing cabinet according 
to the experimental results presented in Figure 4.  

The coarseness values for each sample obtained for the three 
conditions are compared in Figure 5. The correlation between the 
result for the physical sample and Condition 6 had an R-squared 
value of 0.92. The R-squared values were 0.89 and 0.95 between 
the physical sample and Condition 1, and between Condition 6 and 
Condition 1, respectively. The results indicate a good agreement 
between these conditions, although a slightly poorer agreement can 
be seen between the image samples and physical samples for the 
samples with smaller coarseness values. It might be caused by the 
noise which came into the processes of imaging the physical 
samples. It is concluded that coarseness difference can be 
accurately assessed using images reproduced on the monitor.  

The result also suggests that for assessing the equally 
distributed fine detail over a sample like a metallic panel used in 
the experiment, the area presented to the observer is not so 
important. Observers tend to focus on only a part of the sample 
and not on the whole sample. Under Condition 6, only a part of the 
sample was presented to the observer comparing with the physical 
sample and the image sample under Condition 1. Condition 6 had 
less than half of area comparing with the others (see Table 2 and 
Figure 4), however the results showed no particular differences 
from Condition 1. 

Table 3: Repeatability and Accuracy for the three conditions. 

 Condition 6 Condition 1 Physical Sample 

Repeatability 0.69 0.68 0.69 

Accuracy 0.81 0.79 0.82 

Model Predictions 
The computational model for predicting the perceptual 

coarseness from digital images developed by the authors [1] was 
applied for the samples. This model assumes that the amplitude in 
the Fourier transform of the luminance channel of an image is a 
measure for the amount of contrast in the image and that the 
amount of contrast is correlated closely with perceptual coarseness. 
The model also assumes that the contrast-sensitivity function 
(CSF) [11] can be used to appropriately weigh the importance of 
contrast at the each spatial frequency.  The model is expressed by 
Equation (3). 
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where u is the spatial frequency in cycle/degree, umax is the 
maximum spatial frequency contained in an image, CSF(u) is the 
CSF [11], E(u) is the Fourier energy, I is the mean value of the 
luminance channel and S is the size of an image in pixel units. 
Input parameters needed for the model are the sample size (in cm), 
the viewing distance (in cm) and the luminance of the reference 
white tile in a viewing cabinet or a white point of a monitor (in 
cd/m2).  

In the previous work [1], the model performance was verified 
by comparing with the perceptual coarseness of the physical 
samples. The model predicted the coarseness from the captured 
image of the physical samples with the high resolution and the 
experimental viewing condition. Hence, the model considers the 
high resolution image (832 × 832 pixel) as a physical sample size 
of 8 × 8 cm2 which could not be simulated on the monitor because 
of the limited monitor resolution. Therefore, here, the model 
performance was evaluated for the images and the conditions 
under which the observers really assessed the displayed images 
(Condition 6 and Condition 1). The present visual results are used 
to test the model’s performance for Condition 6, Condition 1 and 
also for the physical samples.  

The model predictions which is the subtraction of the 
predicted coarseness value of the reference sample from that of 
each image, are plotted against the visual results in Figure 6. It 
shows that the visual results agree well with the model predictions 

for all conditions. The correlation between the model predictions 
and visual results had R-squared values of 0.91, 0.93 and 0.91 for 
Condition 6, Condition 1 and the physical samples respectively. 
The results prove an excellent performance of the model. 

Discussion and Conclusion 
The perceptual coarseness differences of metallic paint 

coating samples were assessed using two different media using 
image and physical samples. The visual results indicate that 
coarseness differences can be assessed from displayed images as 
accurate as from the original physical samples. The comparison 
between the two set of the visual results on the monitor suggested 
that the area or the magnification of the images do not affect the 
perceptual coarseness difference for metallic paint panels with fine 
details. This may be explained by assuming that observers seem to 
assess only part of a sample, but it may not true for pictorial 
images which observers needs to see whole images. Apart from 
this, a good agreement between visual results under the two 
monitor conditions was well predicted by the coarseness model. It 
was also found that although the spatial frequency information of 
an images is changed when changing the viewing condition 
(especially area and magnification), the model predictions for the 
magnified images (Condition 6) still agreed well with that for the 
non-magnified images (Condition 1).  

Figure 5.  Comparisons of the perceptual coarseness for the three conditions studied. 

Figure 6.  Comparisons of model prediction for the three conditions studied. 
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