
 

  

Camera Design Using Locus of Unit Monochromats 
James A. Worthey, Gaithersburg, Maryland; Michael H. Brill, Datacolor, Lawrenceville, New Jersey 

 

Abstract 
The Maxwell-Ives criterion (MI) says that for color fidelity a 

camera’s spectral sensitivities must be linear combinations of 
those for the eye[1]. W. A. Thornton’s research found certain 
wavelengths, the “prime colors” (PC), with special importance for 
color vision. At CIC 6, M. H. Brill et al. spoke in favor of 
“cameras that have peak sensitivities at the PC wavelengths.”[2] 
MI and PC are not independent ideas. MI implies symmetry 
between the camera and the eye: the camera has its own prime 
colors, which should be similar to the eye’s. At CIC 12, J. A. 
Worthey presented an orthonormal opponent set of color matching 
functions as a path to J. B. Cohen’s Locus of Unit Monochromats 
(LUM), an invariant representation of color-matching facts[3]. We 
now present a concise method to evaluate a sensor set by 
comparing its LUM to the eye’s. Equal LUMs would mean that MI 
is met, and equal PC wavelengths would tend to mean that MI is 
loosely met. We notice that two sets of camera sensors can have 
the same LUM, but differ in the net effect that sensor noise will 
have. A numerical noise example illustrates the point. 

Introduction  
The Maxwell-Ives criterion says that for color fidelity a 

camera’s spectral sensitivities must be linear combinations of those 
for the eye[1]. Two underlying ideas are: (1) That the color 
sensitivities act together as a set—one sensor by itself is not right 
or wrong. (2) That there is symmetry between the camera and the 
eye. Turning to Jozef Cohen’s theory of color mixture [4-6], two 
basic ideas are: (3) That the color sensors act as a set, the same as 
in Maxwell-Ives. (4) That the facts of color mixture can be 
expressed by an invariant graph in 3 dimensions. Extending 
Cohen’s method to a camera allows its color-mixing traits to be 
summarized and compared to the eye’s. 

Camera sensors can be evaluated for overall goodness [7], but 
since one may wish to work with an existing sensor set [8], to deal 
with variability [9], or simply to make compromises, there is a 
need for a conceptual framework in which details can be 
discussed. The method below takes ideas from Cohen’s [4-6] and 
Thornton’s [10] research, and from the orthonormal-opponent 
scheme [3] presented at CIC 12. 

Projector Matrix 
Suppose that A is an N×3 matrix, whose columns are a set of 

color-matching functions (CMFs), A = [a1 a2 a3] . Cohen found a 
projection operator to be “matrix R,” given by 

R = A(ATA)-1AT,  (1) 
where superscript T denotes matrix transpose. The original 
application was, if L is the SPD of a light, to find L*, the 
projection of that light into the vector space of the CMFs: 

L* = RL .  (2) 

L* is called the fundamental metamer [4-6] of L. The 
projection operation is based on a least-squares fit, so it is 
convenient (and accurate) to think of various curve-fitting steps as 
projections. As Cohen discovered [4-6], R is invariant: 
transforming the CMFs in A to a different representation leaves R 
unaltered. The columns (or rows) of R are the L*’s of unit-power 
monochromatic lights, which can be plotted as vectors in a 3-
space. The curve those vectors trace is the Locus of Unit 
Monochromats, an invariant embodiment of the facts of color 
mixing. 

A camera’s sensor functions determine its LUM. Then the 
Maxwell-Ives criterion is that the camera’s locus of unit 
monochromats should be the same as the eye’s. Comparing a 
camera’s locus to the eye’s offers some insight in the realistic case 
that MI is in fact not met. 

 

Abbreviations summarized 
MI = Maxwell-Ives criterion; LUM or just ‘locus’ = locus of 

unit monochromats for the eye, or for a camera; PC = prime 
colors. The words sensitivity and sensor will generally refer to 
spectral properties. 

 

 
Figure 1. Human cone sensitivities, consistent with the CIE’s 2° observer. 
[11] The red, green, and blue functions peak at 566, 543, and 446 nm. 

Red-Green Overlap 
In its simplest statement, MI is a pass-fail test that most 

cameras will fail. Fig. 1 shows a version of human cone 
sensitivities, which are consistent with the CIE’s 2° observer. The 
overlapping functions are a defining feature of human vision, and 
in particular the red and green sensitivities show marked overlap. 
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A direct way to satisfy MI would be for a camera’s sensors to 
mimic the eye, including the spectral overlap of red and green 
sensors. Unfortunately, that would lead to highly correlated signals 
from the red and green sensors and when those signals are 
subtracted to recover hue information, the ratio of signal to noise 
would be poor. 

Table 1 

system sensors peak sep. dir. cos 

r-g 23 nm 0.918 Eye 

g-b 97 0.121 

r-g 59 0.175 Nikon D1 

g-b 62 0.362 

The camera designer’s task then is to choose the sensors with 
MI in view, but also to minimize noise. The camera may map 
colors into a color space different from the eye’s, but one hopes 
that a further mapping (a linear transformation perhaps) can then 
map most objects near to their proper place in human color space. 
Fig. 2 shows the sensitivities of a Nikon D1 camera, as presented 
at an earlier Color Imaging Conference [12]. Compared to the 2° 
observer, the camera does not show the same breadth and overlap 
of the red and green sensitivities. The wavelength locations of the 
peaks are indicated in the figures. Combining those numbers with 
a little further calculation leads to Table 1, where peak sep. 
denotes peak separation, and dir. cos. denotes the direction cosine 
between two functions. These measures support the observation 
that the camera’s red and green sensitivities overlap less than the 
2° observer’s. The camera’s green and blue functions overlap more 
than the human’s. 

 
Figure 2. Sensitivities of a Nikon D1 camera as reported at an earlier Color 
Imaging Conference [12]. The red, green, and blue functions peak at 595, 
536, and 474 nm. The purple plus signs and dashed vertical lines show the 
peak points as found by a simple algorithm. 

Fundamental Metamers  
If two or more lights with different spectra match to a 

standard observer, then traditionally one would say that they have 
the same tristimulus vector [X Y Z]T.  Another proxy for the 
matching lights is their fundamental metamer, the function L* 
defined above [4-6]. L* uses the facts of color mixing, but 
transcends the arbitrariness of XYZ or any particular system. 
Dividing the visible spectrum into narrow bands, then finding the 
fundamental metamer for unit power in each band, leads to a series 
of vectors in a color space, tracing the LUM [4-6]. The columns 
(or rows) of the projector matrix R are a set of vectors tracing the 
LUM, which shows that its shape is invariant. 

Orthonormal Basis 
Color matching data, such as the 2° observer, can be linearly 

combined to form orthonormal opponent color matching functions, 
with the interpretation of achromatic (proportional to y ), red-
green opponent, and a kind of blue-yellow function, Fig. 3. [3] 
The first two functions involve only red and green receptors, so 
they deal with the key issue of red-green overlap. The third 
function has input from all three cones. Combining the three 
functions of this orthonormal basis in a parametric plot gives 
Cohen’s Locus of Unit Monochromats, now graphed with respect 
to meaningful axes. The tristimulus values of any L are the 
coefficients for the expansion of L* in terms of the orthonormal 
basis. [3] Colors add vectorially, so its vector denotes a light’s 
direction in color space and its strength of action in mixtures. In 
the XYZ system, color mixing is modeled by vector addition, but 
vector diagrams would be hard to interpret and are not drawn. 

The orthonormal functions can become the columns of a 
matrix Ω: 

Ω = [|ω1〉 |ω2〉 |ω3〉] (3) 
A ket such as |ωj〉 is a column vector, while a bra such as 〈ωi| is a 
row vector, allowing orthonormality to be written: 

〈ωi|ωj〉 = δij , (4) 
where δij is the Kronecker delta, = 1 if i = j, = 0 if i ≠ j. 

A tristimulus vector based on the color matching functions Ω 
can be called V. [3] Its components represent orthogonal directions 
in color space, and have intuitive meanings. If |L〉 is a light’s 
spectrum, then its tristimulus vector is 

V = ΩΤ|L〉  . (5) 
Letting |L〉 be a narrow-band light of unit power stepped 

through the spectrum, V traces out the LUM. Virtual-reality 3D 
graphs of the LUM are available on 
http://www.jimworthey.com . Applying orthonormality, Eq. 
(4), in Eq. (1), simplifies the formula for R: 

R = ΩΩΤ, (6) 
only when the CMFs are the orthonormal set. 

Prime Colors and Longest Vectors 
Thornton coined the phrase “Prime Colors” for those 

wavelengths that act most strongly in mixtures. [2,10] Within the 
LUM, the prime-color wavelengths (e.g., 446, 538, 603 nm for the 
2° Standard Observer) are approximately the wavelengths of the 
longest tristimulus vectors (e.g., 445, 536, 604 nm). [3,13] 
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Naive Hypothesis 
Thornton found that metameric spectra tend to cross at the 

prime color wavelengths. [10,2] It would then make sense that 
those wavelengths also be important to a camera’s detection of 
color. A simple hypothesis is that a successful camera will have 
red and green sensors somewhat narrower than the eye’s, and 
somewhat more separated in wavelength, with the net effect that it 
mimics the eye’s prime colors. Reality may not be so simple, but a 
plan suggests itself: compare the camera’s LUM to that of the eye, 
and look especially at the camera’s longest-vector wavelengths or 
prime colors. 

 
Figure 3. The orthonormal color matching functions for humans, based on 
the 2° observer. [3] 

Implementation  
Since the camera’s sensors define a different vector space 

from the eye’s, there is not an inherently correct way to graph 
them together. The following method has some logic. We assume 
that orthonormal functions [3] for the eye are in hand, Fig. 3, 
along with rgb functions for the camera. Then orthonormal 
functions are generated for the camera, and they determine its 
LUM. The goal is not curve-fitting as such, but we begin by 
making a fit of one visual function by 2 of the 3 camera functions. 
A projector matrix is used for the least-squares fit: 
1. Call the camera’s sensor functions r, g, b. Define A = [|r〉 |g〉], 

so that the red and green functions become the columns of A. 
Then compute the projector matrix [4-6] Rrg = A(ATA)−1AT. 

2. Find |ω1(camera)〉 = Rrg|ω1〉, where |ω1〉 is the known function 
for the eye. |ω1(camera)〉 is normalized in the next step. 

3. Assemble 3 vectors into a temporary matrix, [|ω1(camera)〉, 
|r〉, |b〉] and do Gram-Schmidt orthonormalization on them in 
that sequence. Then ω2(camera) will be a red-green opponent 
function involving only the red and green sensors, and 
ω3(camera) will be a blue or blue versus yellow function that 
involves all three sensors. 

4. Combining the camera’s orthonormal functions into a single 
‘parametric plot’ gives its LUM, positioned for comparison to 
that of the eye. 
These steps maintain transparency of cause and effect; in 

particular, |ω1〉 and |ω2〉 are always orthonormal linear 
combinations of |r〉 and |g〉 only. Steps 1-3 are intended to align the 
camera’s LUM with the eye’s. We resist the temptation to further 
optimize the alignment. 

 

 
Figure 4. The orthonormal basis for the camera, with human orthonormal 
basis shown as thinner lines. 

Examples 
By the 4 steps above, the orthonormal basis in Fig. 4 was 

computed for the camera sensors of Fig. 2. The camera’s LUM is 
compared to the eye’s in two views, Figs. 5 and 6. The solid 
curves show the camera’s intrinsic color-matching properties, 
independent of any human observer. The dashed curves are the 
eye’s locus [3]. Figs. 5 and 6 are messy, but show the reality of the 
situation. There is freedom in how the LUMs are situated with 
respect to the axes, but otherwise they are invariant shapes. The 
axes have intuitive meanings, enhanced because an orthonormal 
basis means no double-counting. 

Ignoring the short arrows for now, the curves in Figs. 5 and 6 
express the key result. In these figures, we see the vector to which 
the camera will map a light of unit power and wavelength λ. We 
see the mapping of one wavelength in relation to another, and the 
camera’s mapping compared to the eye’s. The eye data are the 
same Cohen space and LUM for which other uses have been 
outlined [3]. The terse Maxwell-Ives idea blossoms into a detailed 
description of the camera’s sensor set. 
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Figure 5. This figure and the next one are projections of the same 3-
dimensional graph. The dashed curve is the LUM for the 2° human observer. 
The solid curve is the LUM for a camera. v1 is the achromatic dimension. 

Additional “Best Fit” Step 
When the steps above succeed at aligning the camera’s LUM 

with the eye’s, they suggest a working transform from camera 
signals to visual space. We now seek the further effect of a “best 
fit” step. Eq. (6) can give us the camera’s projector matrix: 

Rcam = ΩcamΩΤ
cam . (7) 

 

 
Figure 6. The same 3D curve as in Fig. 5 is now projected into v3 vs v2, 
which can be called the chromatic plane. v2 is the red vs green dimension, 
while v3 is blue vs. yellow. The arrows in both figures show the effect of 
making a best fit to the human functions with those of the camera. 

The fit which we seek is the projection of the eye basis into 
the space of the camera, using Rcam: 

Φ = RcamΩ , (8) 

where Ω is the eye’s basis, as in Eq. (3). The columns of Φ are the 
fit functions, linear combinations of the camera’s orthonormal 
basis, Ωcam. In Figs. 5 and 6, the small arrows show the correction 
from the camera’s intrinsic Ωcam to Φ. Eq. (8) is not a method for 
mapping a 3-vector from the camera to human color space. To 
derive the needed 3×3 matrix, combine Eqs. (7) and (8):  

Φ = Ωcam[ΩΤ
camΩ] . (9) 

The product in square brackets results in a 3×3 matrix. Call it  

X = ΩΤ
camΩ , (10) 

no connection to the XYZ system. Then X is a transform from 
camera basis to “fit” basis: 

Φ = ΩX . (11) 
If |L〉 is any radiance, take the matrix transpose on both sides of 
Eq. (11) and find the tristimulus vector on both sides, according to 
Eq. (3). Then 

ΦT|L〉 = XTΩcam
T|L〉. (12) 

Referring again to Eq. (5), 

Vfit = XTVcam , (13) 
where Vcam and Vfit are the 3-vectors before and after correction. 
The numerical matrix for the data just considered is: 

XT = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

88096.007741.0036341.0

13688.093879.0070569.0

093857.0097437.0    . (14) 

 
Figure 7. Quan’s optimal sensors. 

Quan’s Optimized Sensitivities 
Quan addressed the problem of optimal camera sensitivities, 

describing the problem as above: the camera should have red and 
green sensitivities narrower than the eye’s in order to improve 
signal-to-noise [14]. After an analysis that considers lights and 
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objects that the camera might encounter, he arrived at an optimal 
set of sensitivities, Fig. 7. These sensors can be analyzed as was 
the set above, Figs. 8 and 9. To the extent that the loci are 
different, the curve-fit adjustment does little. The camera’s r and g 
sensors are narrower than for human, which apparently causes 
distortion as seen in Fig. 5 and to a lesser degree in Fig. 8. 

 

 
 

Figure 8. projection into the v2-v1 plane of the locus based on Quan’s optimal 
sensors. Again, the dashed curve is the locus for the 2° standard observer. 

 
Figure 9. Projection into the v2-v3 plane of the locus based on Quan’s optimal 
sensors. 

Prime Color Wavelengths, etc 
Again, the prime color wavelengths for the 2° observer are 

603, 538, and 446 nm. The prime colors for the Fig. 2 camera are 
595, 536 and 474 nm, while its longest vector wavelengths are 
592, 536, 474 nm. For Quan’s sensors, prime wavelengths are 585, 
538, 461 and longest vectors are at 584, 539, 461. Ref. [13] 
reviews methods for finding the prime wavelengths. The red prime 
colors of both cameras speak to a mapping of reds different from 

human, seen in Figs. 5, 6, 8 and 9. To that extent, the naive 
hypothesis (above) is not supported. 

Observation about noise 
 
The results above relate color mixing to the vector space of a 

camera’s sensor functions, expressed by the LUM. The sensors 
also affect a camera’s signal-to-noise properties in a way that the 
LUM does not predict. In toying with the idea of anomalous color 
vision, Fig. 10 was generated. The left and right curves are green 
and red cones. The middle graphs show hypothetical “anomalous” 
cones, computed as mixtures of red and green. 

 
Figure 10. Red and green cones and 2 intermediate mixtues. 

Now compare two hypothetical cameras, considering only 
their r and g sensors, represented as the columns of [|r〉 |g〉]. One 
camera has sensors with the exact sensitivities of human red and 
green cones, Fig. 1 or Fig. 10. The “anomalous” second camera 
has the same g sensors, but its r sensors have the sensitivity drawn 
with long dashes in Fig. 10. Those “red” sensors are only a little 
different from the green ones, but they must play the red role. The 
anomaly is assumed to be in the red sensors, not simulated by 
adding and subtracting. Both cameras satisfy MI, meaning that 
both have the orthonormal basis of Fig. 3, and both have the LUM 
shown for human in Figs. 5 and 8, where only red and green cones 
play a role. The first function is achromatic, the second is red-
green, and there is no third. Doing Gram-Schmidt on [| y 〉, 
|normal r〉] will give Ω. Noise arises in the sensors, including the 
quantum noises of detected photons and of dark current. Such 
camera sensitivities [|r〉 |g〉] can be transformed to orthogonal 
functions in a matrix Ω via a 2×2 matrix Y:  

Ω = [|r〉 |g〉]Y   , (15) 
from which the required Y can be obtained by pre-multiplying by 
ΩT: 

Y = (ΩT [|r〉 |g〉])−1   . (16) 
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For camera 1, with normal human sensors, when the cone 
amplitudes are adjusted as in Fig. 10, 

Y1 = 
⎥
⎦

⎤
⎢
⎣

⎡

− 310.00447.0

267.00725.0    . (17) 

For camera 2, the anomalous one, 
Y2 = 

⎥
⎦

⎤
⎢
⎣

⎡

−− 843.0100.0

782.0212.0   . (18) 

For any light |L(λ)〉, we wish to relate signal and noise in a 
camera’s signal V to the red and green signals R and G, and the 
noises NR and NG. Eqs. (15), (17) and (18) are used with the 
definition of V, Eq. (5). Let v1, v2 be the achromatic and red-green 
components of a signal V. Then the components for Camera 1 are: 

v1 = 0.0725 R + 0.0447 G . (19) 

v2 = 0.267 R −0.310 G . (20) 
The noise signals add in quadrature, giving the noises in Camera 
1’s two channels: 

n1(Camera 1) = [(0.0725 NR)2 + (0.0447 NG)2]1/2   , (21) 

n2(Camera 1) = [(0.267 NR)2 + (−0.310 NG)2]1/2 . (22) 
Now make a further simplifying assumption that NR = NG = 

N, for both cameras. Then, n1(Camera 1) = 0.0851N , n2(Camera 
1) = 0.409N . By similar logic, n1(Camera 2) = 0.235N , 
n2(Camera 2) = 1.1495N . Two unsurprising conclusions are that 
the v2 signal is noisier than the v1 signal in both cameras, and the 
noise is more than doubled in each of v1 and v2 for Camera 2, 
because of the red sensor being so similar to the green. Signals v1 
and v2 don’t need to be evaluated; whatever they are, they are the 
same for both cameras, because Ω is the same for both cameras. 

One conclusion was stated above: two sets of receptor 
sensitivities can both satisfy the Maxwell-Ives criterion, but differ 
in their noise properties. Also, notice that the orthonormal basis 
played the role of a standard signal format. The signals v1 and v2 
measure independent stimulus dimensions in a standardized way. 

 

General conclusion 
 
Our main message is that the Maxwell-Ives criterion can be 

expressed as a graphical comparison. A locus of unit 
monochromats is generated for the camera so its color-mixing 
properties can be compared to the eye’s. The effect of a further 
adjustment can be added to the diagram. Even the remapping of 
example object colors by a camera’s sensors could well be shown 
in Cohen’s color space, though it was not done here. The method 
given above under “Implementation” is easy to apply. Using 
orthonormal bases for the eye and camera sensitivities eases the 
algebra. Our claim is not that any one equation above is original 
and undreamed of, but that the graphical method can be used in an 
open-ended way to aid sensor and camera design. 
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