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Abstract 
Reconstructing a colour constant reflectance function under 

various practical light sources is important in some of practical 
applications. Linear programming method was proposed by 
Takahama and Nayatani (1973), and Berns et al (1985) 
respectively. Their methods were derived based on minimisation in 
the tristimulus values colour space in order to avoid nonlinear 
optimisation. In this paper a least-square method was derived for 
reconstructing reflectance functions based upon the concept of 
colour constancy. The main contributions of this method are a) 
directly using colour difference as a measure of colour constancy; 
b) avoiding highly nonlinear optimisation; c) generating much 
smooth reflectance with very good colour inconstancy index. 

 
 

Introduction 
When a colour object is given in terms of tristimulus values 

vector p  ( ),,( ZYXp t = , the transpose of the column 

vector p  ) under a particular light source and a CIE standard 

colorimetric observer, to reconstruct the reflectance function 

),,,( 21 n
t rrrr L= of the object is equivalent to solve the inverse 

problem: 
rMp t=                                             (1) 

 
Here the 3×n  ( 3>n ) matrix M is the weighting table 
computed from the spectral power distribution of a light source 
and a CIE standard colormetric observer. It is clear that there is no 
unique solution with solving equation (1) for r . The problem can 
be overcome by adding the smoothest condition [1,2,3], or using 
the basis vectors [4]. Unfortunately, reconstructed reflectance 
function r  using either smoothest condition or basis vectors is not 
necessary to have a colour constancy property, which refers to the 
invariance of the perceived colour of surfaces under changes in 
illuminations. This characteristic of colour constancy is important 
in practical applications such as digital printing, textile and paint 
industries. 

 

Notations 
In order to describe the new method and methods related, 

some notations are needed to define clearly first. All vectors used 
in this paper are column vectors. A row vector is the transpose of a 

column vector. For example, tr is a row vector.  As defined early, 
p  is a vector of tristimulus values. Subscripts R  and T  relate to 

the reference and test illuminants respectively. Superscripts C  
and W  in bracket relate to tristimulus values of the corresponding 

colour and the relevant illuminant respectively. Thus, Rp  and 

Tp  indicate the tristimulus values are computed under the 

reference and test illuminant respectively. )(C
Rp  is a vector of 

corresponding colour’s tristimulus values transformed from Tp  

using a chromatic adaptation transform (CAT).  )(W
Rp  is a vector 

of tristimulus values of reference illuminant. Finally, RM  and 

TM  stand for the weighting tables under the reference and test 

illuminants (combined with CIE 1931 standard observer) 
respectively. 

 
 

The Takahama and Nayatani Method 
 In 1973, Takahama and Nayatani [5] gave a linear 

programming algorithm for reconstructing reflectance function 
with colour constancy property. Their method can be described 
using the following flowing chart: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The flowing chart of the Takahama and Nayatani method 

 

Note that the ),( )(C
RR ppd in the above chart is a distance 

measure between the two vectors of tristimulus values. Ideally, it 
should be a colour difference measure, such as CIELAB colour 

difference ),( )(C
RR ppEE ∆=∆ . In order to reduce the 

computational complexity, they used the following distance 
measure: 

||||),( )()()()( C
RR

C
RR

C
RR

C
RR ZZYYXXppd −+−+−=   (2) 

Secondly, we note that, several test illuminants can be used, 
see N  of them, thus, the above minimisation is to find r  that 
minimises: 

∑
=

N

i

C
iRR ppd

N 1

)(
, ),(

1
                                           (3) 

Given tristimulus values Rp  

To find reflectance r  via solving the following: 
 

                 ),( )(C
RR ppd

r

Min
       

 
Subject to: rMp t

RR )(=  and 10 ≤≤ r  
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Here, the second subscript i  relates to the i-th test illuminant. For 

example, )(
2,

C
Rp  is the vector of tristimulus values (or 

corresponding colour under the reference illuminant) transformed 

from 2,Tp , the tristimulus values calculated under the second test 

illuminant, via a CAT. 
Thirdly, we note that the smooth constraint was incorporated 

and defined by the following: 

jjj Srr ≤− + || 1 , 1,,2,1 −= nj L              (4) 

Here, jS , 1,,2,1 −= nj L , are some pre-specified constants. 
Finally, they transformed the above problem to a linear 
programming problem. 

It is found that the method can generate reflectance with 
lower colour inconstancy index, through the minimization is in the 
tristimulus value space. However, the reflectance is too rugged, or 
step-like as shown in Figure 4, where the thick dot curves were 
generated using this method. This phenomena was illustrated in 
their own example [5], and was noted in references [1,2] as well.   

 

The Berns, Billmeyer, and Sacher Method 
In 1985, Berns, Billmeyer, and Sacher [6] also gave a linear 

programming method to reconstruct the reflectance functions for 
the Munsell colour order system with colour constancy property. 
The flowing chart is given in Figure 2. The reference illuminant 
they used is illuminant C since Munsell colour order system was 
rigorously defined under the illuminant and CIE 1931 standard 
observer. The 10 chosen test illimunants were continuous spectrum 
filtered incandescent type daylight plus illuminant A. The 
nonlinear chromatic adaptation transform developed by Nayatani 
et al [7] was used. Like Takahama and Nayatani method, the 
minimisation was made is still in the tristimulus space. They also 

introduced hue vector Th  (the difference between )(W
Tp and )(C

Tp  

) and allow the solution to move off and along the hue vector. 
Thus, the solution is constrained by the following equation: 

∑
=

++=
8

1
,,

)(

j
jTjTTT

C
TT vahbpp  with 0, ≥jTa    (5) 

where jTv , ’s are unit vectors and orthogonal to Th , and angle 

between successive jTv , ’s is 45 degree. Therefore, minimization 

measure they used is defined by the following: 

∑
=

+=
8

1
,

)( ||),(
j

jTT
C

TT abppd                                (6) 

 Besides, the smoothness for the reconstructed reflectance was 
achieved by using  

03.05.05.003.0 11 ≤+−≤− +− jjj rrr , 

        1,,2 −= nj L                           (7) 

which was proposed by Ohta [8].   
As noted to the Takahama and Nayatani Method, when more 

test illuminants are used, the averaged ),( )(C
TT ppd  of equation 

(6) is used. It is found that generated reflectance using this method 
is ‘smoother’ than that generated by Takahama and Nayatani 
Method, but it is oscillated too much, as shown in Figure 4. This 

phenomenon was also illustrated by their own example (Fig. 3, 
reference [6]). 

   
  
 
 
 
 
 
 
 
 
 
 

 
Figure 2: The flowing chart of the Berns, Billmeyer and Sacher 

Method 

 
 

The Estimate CIELAB Colour Difference 
In order to describe the new method, we need to find an 

approximation to the CIELAB colour difference. Let 

),,( baLq t =  and )0,0,16(=td , then transformation from 

tristimulus space to CIELAB space can be done using  

 dppAFq W −= ),( )(                                         (8) 
Here, )(Wp  is the tristimulus vector of the illuminant, and  
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where  
            

⎩
⎨
⎧

<+
≥=

008856.0    if         116/16787.7
008856.0    if                            ,)(

3/1

ht
hhhf      (10) 

 
Let  1p  and 2p  be tristimulus values of the two colour 

samples and  1q  and 2q  be the corresponding L, a, b vectors, 

then  
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          (11) 

Here, g ( ),,( ZYXg t = ) is a tristimulus vector with X  

between 1X  and 2X  , Y  between 1Y  and 2Y , and Z  between 

1Z  and 2Z  .  The prime “’” represents derivative and 
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Given tristimulus values Rp  

To find reflectance r  via solving the following: 

                 ),( )(C
TTr

Min ppd        

subject to: rMp t
RR )(=  and 10 ≤≤ r  

                   Equality constraint (5) for each test  
                   Illuminant; and smoothness (7)               
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Thus, if we define a vector tZYXg ),,( 0000 = with 
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 and similarly with 0Y and 0Z ,  we have  
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)( WW pgFpgF ≈                                (14) 

Therefore, we have 
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Here |||| p  denotes the 2-norm of the vector p , i.e., the square 

root of the sum of the squares of each of the components of the 
vector p . 

 

The New Method 
We still let Rp  and )(W

Rp be the tristimulus vectors of the 

colour sample and the reference illuminant, and Rp  and the 

wanted reflectance function r satisfy: 

rMp t
RR )(=                                             (16) 

Now we choose CAT02 [9] to transform jTP ,  to the 

corresponding colours )(
,

C
jRp  in the reference tristimulus values 

space. Then we have 

   rMUpUp t
iTiiTi

C
iR )( ,,
)(

, ==                                         (17) 

where iU  is a 33×  matrix depending on the reference and i-th 

test illuminant and the matrix of the CAT02. Besides, we use the 
following colour inconstancy index (CII)  
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N 1
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CII                                          (18) 

Now it can be shown that  
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Note 0g is chosen according to Rp and )(W
Rp using equation 

(13). If we let 
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                  2||||CII Br≈                                            (20) 

The smoothness of the reconstructed reflectance can be 
achieved by introducing a smooth operator matrix G [3], and the 
smoothness can be modeled by  

 

        Minimise 2|||| Gr                                             (21) 

The above discussion leads to the following constraint least 
squares problem: 

 

Minimise  22 |||||||| GrsBr +  

Subject to: 10 ≤≤ r , and rMp t
RR )(=  

 
The variable s  is the weight, which balances the important 
contributions from CII and smoothness. 

 
 

Performance Comparison 
1560 measured reflectance functions between 400nm and 

700nm at 10nm interval from Munsell colour book were used for 
generating tristimulus values. CIE illuminant C was used as 
reference illuminant. The test illuminants were D65, A, D50, F2, 
F7, and F11. CIE 1931 standard observer was used for generating 
tristimulus values. Thus, for each reflectance, a tristimulus value 
vector can be computed under illuminant C and CIE 1931 standard 
observer. Hence a new reflectance can be generated using each of 
the above methods.  

For measuring the reflectance generated, the colour 
inconstancy index CMCCON02 [9] will be used. Note that when 
generating reflectance, the reference illuminant is the CIE 
illuminant C. However, for the performance measure, the CIE 
illuminant D65 is used for the reference illuminant, and illuminant 
C, D50, A, F2, F7 and F11 were used as test illuminants. Thus, for 
each reflectance (original or generated), its colour inconstancy 
index is measured using the following: 

∑
=

∆=
6

1

)(
, ),(

6

1
CII

i

C
iRR ppE                                       (22) 

where Rp is the tristimulus values computed under the reference 

illuminant D65, )(
,

C
iRp  is the corresponding tristimulus values 

transformed from iTp ,  , tristimulus values computed under each 

of the test illuminants: C, D50, A, F2, F7 and F11, using the 
chromatic adaptation transform CAT02. 

The CII of generated reflectance functions on the vertical axis 
versus the CII of the original reflectance functions on the 
horizontal axis were drawn in Figure 3. The 45 degree line was 
also drawn on each of the diagrams in Figure 3. If all points are on 
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or around the 45 degree line, there is no improvement according to 
this measure. While, all the points are located below the 45 degree 
line, the generated reflectance functions have a better colour 
inconsyancy index compared with its original. The left, middle and 
right diagrams of Figure 3 show the performances of the proposed, 
the Berns, Billmeyer, and Sacher, and Takahama and Nayatani 
methods respectively. According to this measure, the proposed and 
Takahama and Nayatani methods have a similar performance and 
they are much better than the Berns, Billmeyer, and Sacher 
method. 

  Figure 4 shows the original and generated reflectance 
functions using each of the three methods. The thin full curves are 
the original reflectance functions; the thick full curves were 
generated using the proposed method; the thin dot curves were 

generated using the Berns, Billmeyer, and Sacher method; and the 
thick dot curves were generated using the Takahama and Nayatani 
method. It can be seen that the reflectance functions generated by 
Takahama and Nayatani method are stair-like, while the 
reflectance functions generated by the Berns, Billmeyer, and 
Sacher method are ‘smoother’ than those generated by by 
Takahama and Nayatani method, but they are oscillated too much. 
In general, the reflectance functions generated by the proposed 
method are much smooth.  

Finally, we note that all the computations were done using 
MATLAB. It is found that the proposed method took the least 
CPU time compared with the other two methods. 

 

 

   
Figure 3: The CII of generated reflectance (vertical axis) generated by the new method (Left), Berns, Billmeyer, and 

Sacher (Middle), and Takahama and Nayatani method (Right) versus the CII of the original (horizontal axis). 
 
 

  
Figure 4: Reflectance functions: the original input (full thin curve), generated by the New method (full thick curve), 

generated by Berns, Billmeyer and Sacher method, and generated by Takahama and Nayatani method (thick dot curve). 
 

 

Conclusions 
In this paper, a new method for generating reflectance with a 

better colour inconstancy index is developed. The proposed 
method is simple and leads to a constrained least squares problem. 
The main contributions are: a) directly using colour difference as 
measure of colour inconstancy; b) avoiding highly nonlinear 

optimisation; c) generating much smooth reflectance with very 
good colour inconstancy index. 
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