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Abstract

Calibration charts are used in colour imaging to deter-
mine color correction transforms and for spectrally character-
ising imaging devices. Traditionally, quite complex charts have
evolved as it was reasoned that the more reflectances in a chart
the more the chart could represent all other reflectances. How-
ever, a chart with many reflectances is both expensive, difficult
and tedious to use. The difficulty lies in assuming constant light-
ing conditions over the whole chart and the tedium appears when
the chart must be measured using a spectrophotometer. To cir-
cumvent these problems researchers have sought methods to find
smaller sets of reflectances which, in some sense, represent larger
reflectance sets.

In this paper we develop an iterative selection procedure
where we select individual reflectances from a colour chart. The
first is chosen so it best accounts for the majority of the spec-
tral variance. The next best accounts for the variance that is left.
In general the ith selected chart reflectance best accounts for the
variance among reflectances (given that i — 1 reflectances are al-
ready selected). We show that this procedure is weakly optimal
and as such compares with prior art which chooses reflectances
using simple heuristics. The new method is also much faster than
algorithms that are built on stronger optimality conditions. Ex-
periments demonstrate that our new method represents a reason-
able compromise between fast (and feasible) reflectance selection
and the optimality of the chosen set.

Introduction

There are many applications in colour science involving al-
gorithms that require the camera’s response to a number of sur-
faces as their input. For example, calibrating a camera to de-
termine a transform form the camera dependent rgb space to a
camera independent space such as xyz [1], involves measuring
its response to a number of surfaces with known spectral prop-
erties. The same measurements are required for spectral calibra-
tion [2, 3, 4]where the user is interested in estimating the sensor
curves. To achieve accurate calibration results, the measurements
are taken under laboratory controlled conditions making sure that
the variation in the spectral data is minimised. Measuring the
spectral data and the corresponding rgb responses is a tedious
task and human error as well as error introduced by the varia-
tion in the lighting conditions are expected, especially, when the
number of measurements taken is large. Furthermore, calibra-
tion results achievable are determined by the spectral properties
of surfaces in a calibration target: a collection of predominately
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red surfaces would result in a calibration which is biased to cor-
recting red colours but would not be so useful for calibrating blue
colours. Hence we might wonder how many surfaces out of those
available in a calibration chart are actually needed and which ones
would result in a well behaved calibration. Finally, from a theo-
retical point of view, it is interesting to solve for a reduced set
of surfaces that are sufficient to describe the spectral space of a
larger set.

The search for a reduced set of surfaces to describe a larger
dataset is not new: Hardeberg et al [5] introduced an algorithm to
select a reduced set of reflectances to be used in scanner calibra-
tion. The algorithm [5] is a technique to select reflectances such
that they are as different as possible to each other where the differ-
ence measure is determined by the condition number of the matrix
encapsulating the reduced reflectance data, where the smaller the
condition number [6] the more different the surfaces are. Unfor-
tunately, the method is a greedy algorithm [7], which converges
to a local rather than a global optimum. More recently, Alsam et
al [8] proposed a surface-reduction algorithm which defines the
most significant surfaces as the extreme points on the convex-hull
of the spectral data. The results in [8] show that as many as 80 sur-
faces are needed to account, fully, for the data of the Munsell book
of colors which is composed of 1269 surfaces. Further reduction
is achieved by means of a volume projection technique where the
optimum set of surfaces is taken as that which encloses the largest
volume percentage. Unfortunately, due to the prohibitively large
calculation complexity the algorithm is restricted to a maximum
data dimensionality of five. Knowing that the dimensionality of
some data sets extends to higher dimensional spaces, 3-11, [9];
it is believed that some significant information is likely to be lost
when using this method.

In this paper, we present a new iterative method which is, like
Principal component analysis, based on calculating the Eigenvec-
tors and Eigenvalues of a data matrix. PCA can be formulated as
finding the direction (spectrum) of maximum variance and then
calculating the data orthogonal to this direction. Note that the
best spectrum need not be in the original dataset. This strategy is
iterated (we find the max variance direction of the new orthogo-
nally projected) data and project orthogonal to this direction and
so on until we account for all the variance in the data (or reach a
suitable stopping criterion). The PCA method is known to be op-
timal (in terms of accounting for the largest % of variance in the
data given a fixed number of k basis vectors). Here, we propose
a similar approach, where the first vector, which is drawn from
the set of spectra at hand, is the one that, considered as a basis
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vector, accounts for greates variance in the data set. Like PCA we
now iterate: the data is projected orthogonal the first basis, and
then we search for the new max variance direction in the spectra
that are left and continue this matrix deflation [10] until we reach
a stopping criterion. In this way each basis vector we select is a
reflectance spectrum in the original dataset.

This PCA-like algorithm can be directly applied to any spe-
tral data set. Alternatively, we can transform the spectral data to
a conical space as proposed by Reiner Lenz [11] and then apply
the technique. This second technique has the advantage that t is
known that the transformation of the spectra into a conical space
results in a separation between intensity and hue. Thus, when
reducing the data in a space we tend to recover get spectra that
represent the dominant hues: red, green and blue etc.

Background

The problem which we are trying to solve is reducing the
number of surfaces, ¢, contained in an n X m data matrix C where
n is the dimensionality of the data governed by the sampling rate,
normally 31, and m is the number of surfaces.

The Most Significant Reflectances

In [5] Hardeberg et al introduced an algorithm to select a re-
duced set of reflectances to be used in scanner calibration. The
motivation behind the authors’ work on selecting a subset of re-
flectances was the need for a very large set of spectrally different
reflectances to facilitate an adequate sensor recovery in conjunc-
tion with the truncated singular value decomposition method [2].
More formally,

1. Starting from the full set of colour signals C we choose the
one with maximum norm:

HCIH > chH fori=1..m (@))]
where ¢, is the first colour signal vector in the reduced set.
Typically, this condition returns a white surface.

2. The second reflectance is selected by evaluating the condi-
tion number of the two column matrix, with the first col-
umn being the first chosen vector and the second vector is
any other vector from the set. This is an iterative procedure
which enables us to find the vector which will result in the
minimum condition number for the matrix. We seek to find
¢, such that:

O ([e163]) _ Omax ([e16])
G ([€162]) = Oin ([e161])

fori=1..m (2)

where 0;,4x denotes the maximum singular value of the ma-
trix ¢,¢; and ©,,;, denotes the minimum nonzero singular
value.
3. the next colour signal is chosen in exactly the same fashion:
Omax ([€16---¢]) < Omax ([e1¢5--¢;_1¢])
Opin ([e162-¢,]) = Opin ([e163-0,1¢1])
fori=1l..m,i¢ {cl,cz...ci_l}

3

14th Color Imaging Conference Final Program and Proceedings

The basic problem with the Hardeberg method is that it is
a greedy algorithm (it chooses the best spectrum using a sim-
ple criterion given the choices already made and the data that is
left). Unfortunately, unlike some greedy procedures, the Harde-
berg method does not converge the globally best answer.

However, finding the best global selection of surfaces is not
easy. Let us assume that the number of reflectances needed to
perform the calibration is 7 out of the 24 patches of the Macbeth
colour checker. Then the number of possible combinations is:

vy _ 24! _
Ne=do—o1 ~ Ta—7y 01 @
where z is the number of surfaces in the subset while y is the total
number. Hardeberg’s algorithm clearly does not explore all these
combinations.
Figure (1) shows the first three reflectances achieved by
Hardeberg’s algorithm (the spectral data of the Macbeth Color
Checker).
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Figure 1.  The first three reflectances achieved by Hardeberg’s algorithm
based on the spectral data of the Macbeth Color Checker.

Convex Reduction

In [8] Alsam et al proposed a geometric solution to the sur-
face reduction problem. The fundamental idea is that a set of
reflectances occupy a subspace in an n-dimensional hyper-cube.
Moreover, the space occupied by the reflectances is defined by a
number of extreme points, which are themselves natural surfaces.
Hence Alsam proposed that it is sufficient to describe an arbitrar-
ily large set of reflectances using those surfaces which lie on the
convexhull of the spectral gamut. Further, the authors argue that
the most significant surfaces are those which enclose the maxi-
mum possible volume in the spectral space. Choosing the volume
as the optimality criterion is in keeping with [12], where the prime
colors are defined as those, which enclose the maximum volume
in the chromaticity space. Moreover, the volume defined by a set
of points is directly associated with determinant of the resultant
matrix; and it is well established that the stability of matrix inver-
sion is directly related to the determinant of the matrix: where the
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greater the determinant the more stable the inverse. Though, max-
imising this determinat is a computationally laborious: we arrive
at a more rigorous algorithm for spectral selection (in comparison
with the Hardeberg method) but at a much higher computational
cost.

The main criterion which a reduced set needs to satisfy is
that any other reflectance in the global set should be a convex
combination of the reduced set, i.e. a reflectance ¢

k k
c=>Ac¢ YA =1 and A >0Vi ©)
i=1

i=1

where ¢ is the ith extreme point in C.

To satisfy Equation (5) ,exactly, for any reflectance c¢ the
reflectances ¢ in the reduced set have to be the extreme points
defining the convexhull of the spectral data C in the spectral space.
Unfortunately, the complexity of calculating the convexhull of a
31 dimensional data is forbiddingly, high [13]. Thus to proceed
the authors make use of linear models where, the spectral data in
C is approximated using 3-5 basis vectors.

In Figure (2), we plotted the first three most significant sur-
faces arrived at by using Alsam’s algorithm, here the calculations
were based on the 24 surfaces of the Macbeth Color Checker. As
we see the most significant surfaces include a white and a black.
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Figure 2. The most significant surfaces arrived at by using Alsam’s algo-
rithm, here the calculations were based on the 24 surfaces of the Macbeth
Color Checker.

Reducing Calibration Surfaces by Matrix Pro-
jections

The algorithm proposed in this paper is similar to the stan-
dard algorithm used to calculate the eigenvectors of a data matrix.
We start by normalizing each colour signal, ¢/, by its norm, i,e,:

cl

el

Q)

c

where ||c'[| is the second norm of ¢. The result, for all colour
signals, is an n X m matrix C whose columns have norm 1. Having

done that we calculate, for each vector, ¢ a score value s; defined
as:

s = [T )| for i = 1...m )

where T is the vector transpose operator. We use the superscript
(it) to denote the itth iteration (in terms of the narrative thus far
it = 1). Based on the score value sl(”) obtained for each vector,
we chose the first vector in the set as the one corresponding to the
highest score.
k = max; sl(i’ )
v(zt) _ C]({zt)

where it = 1 when the 1st vector is chosen. The motivation behind
this choice is that the vector which results in the highest score is
the one which is most correlated, i.e. representative of the data
set.

To find the second most representative vector we define a
projection operator onto the null space of the first vector, ylin):

Pl — [ — 0T )

Using the projection matrix P we project the data in C onto the
null space of v(D:

C(i"H)J_ :P(it)c(it) )

Clearly, starting with it = 1, we can calculate the first re-
flectance spectrum v(). We then increment it to equal 2 then 3
then 4 and so on and use the procedure (7) through (9) above to
calculate the basis functions v(z), v(3), v4) and so on.

Interestingly, this simple procedure can be shown to equal
Principal component analysis given a dataset that comprises a
closed convex set of spectra i.e. if we allow all convex combi-
nations of our input spectra then PCA and the above procedure
(operating on these combinations) will return the same basis vec-
tors. In this respect we say that our selection procedure is weakly
optimal.

The Conical Intensity and Chromaticity

As mentioned in the introduction section, in this paper, we
tested the influence of transforming the spectral data into the con-
ical space proposed by Reiner Lenz [11]. Thus in this section,
we offer a brief description of this transformation. We start with
a general linear model where any spectrum is written as a linear
sum of a set of basis vectors:

-

CR

o.b; (10)

1l

i=1

It is known that: when the basis functions b; form an orthonormal
system, then the expansion coefficients o; are given by the scalar
products (c,b;) in the Hilbert space. Furthermore, in Principle
Component Analysis PCA, the basis vectors b; are as the eigen-
vectors of the n X n correlation matrix encompassing the spectral
data, i.e. CCT.

To transform the spectral data into a conical space of inten-
sity and chromaticity, Lenz noted that the first eigenvector b; is
equal to the mean and positive everywhere. He then showed that
the first eigenvalue o, is a measure of the intensity of the spectral
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distribution. Thus to transform the spectra to an intensity inde-
pendent space he defined a non linear transformation where all
the eigenvalues where normalized by the first, i.e.:

% On (11)
e

Given this transformation and Equation (10) a colour signal in the
chromaticity space can be defined as:

~ O O O,
= 2by+ 2by+...+ —by (12)
0 0 0
In this paper we are interested in using this chromaticity
spectral representation as input to our new selection procedure.

Experiments and Results

To test the new algorithm and the influence of the coni-
cal transformation on surface selection, we indexed the 24 re-
flectances of the Macbeth Color checker in order of significance.
To compare the results we performed the selection using the new
algorithm first in the spectral space and then in the conical space.
We also indexed the surfaces using Hardeberg’s algorithm de-
scribed in the background section.

The results of the indexing experiment are shown in Figure
(3) for the original reflectances and (4) for those obtained in the
conical space. As we note from the two figures, transforming the
spectra to the conical space as a pre-indexing step results in sur-
faces which correspond to the dominant colours, i.e. red, green,
blue, purple and white.
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Figure 3.  The most significant 5 surfaces arrived at by using the new
proposed algorithm, here the calculations were based on the 24 surfaces of
the Macbeth Color Checker.

The evaluation of the usefulness of the selection and the
comparison of the reduced set to the global (that from the whole
chart), is not trivial and depends on the application considered,
i.e if the surfaces selected are to be used for spectral calibration,
colorimetric characterisation or reflectance recovery. In this pa-
per, we chose a simple experiment which involved solving for the
optimal 3 x 3 transformation matrix, in the least squares sense,
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Figure 4.
proposed algorithm in the conical space, here the calculations were based
on the 24 surfaces of the Macbeth Color Checker.

The most significant 5 surfaces arrived at by using the new

to transform the rgb data to CIEXYZ. Knowing that a minimum
of three surfaces are needed, we used an increasing number of
surfaces, as indexed by the algorithms, to solve for the transfor-
mation matrices. The number was increased from 3-24 which is
the total number available from the chart. Using each matrix we
transformed the rgb data for the whole set to the corresponding
CIEXYZ values. Finally, we transformed both the measured and
estimated XYZ values to the perceptually uniform LAB space and
calculated the difference between the two sets. These calculations
were based on the assumption of equi-energy illumination spec-
tra; and were carried out for the Sony DX. The spectral sensitivi-
ties of this camera are shown in Figures (5). Finally, the results of
fitting the data in the Lab space based on the rgb data are reported
in Table (1). We report the minimum mean and median values of
the Lab differences as well as the number of surfaces which were
required to achieve those values. From Table (1), we note that the
selection algorithm performed best when the indexing was car-
ried out in the conical space where we find that as few as 4 and 3
surfaces were sufficient to result in the minimum mean and me-
dian differences. Further, the new algorithm resulted in the lowest
median error, however, 9 surfaces were required. Here, we have
to note that the relation between CIEXYZ and Lab is none lin-
ear and that the errors depend on the relation between the camera
sensitivities and the color matching functions [14].
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Figure 5. The spectral sensitivities of a Sony DX camera.
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