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Abstract

Common, tri-chromatic, RGB colour-acquisition devices
capture spectral signals by a coarse sampling through three broad
colour filters. Due to metamerism, a single response from a RGB
device corresponds to an infinite set of possible surface spectral
reflectances. In order to acquire higher quality surface colour
descriptors that reduce metamerism in the acquisition process,
multi-spectral imaging devices are used. These sample the spec-
tral signals more finely through > 3 colour filters, enabling better
estimation of surface spectral reflectance and consequently miti-
gating the problem of metamerism.

In this paper the performance of a 6-channel digital video
camera is evaluated in terms of it’s accuracy to capture surface
spectral reflectances. A number of known techniques to estimate
reflectance from device response are examined, such as linear
least squares, the Wiener estimation technique, Tikhonov regu-
larised estimation as well as the Metamer Set Maximum Likeli-
hood method.

The performance of each algorithm is compared under dif-
ferent training and testing conditions. The experiments show
that there estimation accuracy is significantly increased by using
multi-spectral acquisition and furthermore that there is benefit in
using more advanced estimation techniques still.

Introduction

In conventional tri-chromatic colour-acquisition devices,
colour rendering properties of surfaces in a scene are recorded as
a vector of three values, commonly known as the RGB. These
compactly express the interaction of light, surface and device
characteristics. However, the RGB is also a compressed repre-
sentation of surface colour. It is both illuminant and device de-
pendent and significantly under–samples the higher dimensional
colour signal by representing it in 3 dimensions. Surface spec-
tral reflectances and colour signals on the other hand, have been
found to be of much higher dimensionality[19]. This discrep-
ancy gives rise to the phenomenon of metamerism, whereby an
infinite set of surfaces induce the same RGB response. Both the
compressed, ambiguous nature of RGBs and it’s dependence on
device and illuminant conditions renders this colour descriptor in-
accurate. Consequently, it is necessary to perform device charac-
terisation (mapping RGBs to a device-independent colour space
such as CIE XYZ tristimulus space) or reflectance estimation (es-
timating the spectral reflectance of a surface from the recorded
RGB response). With the present colour rendering quality re-
quirements, it is increasingly desirable to opt for the latter ap-
proach, as it yields not only device and illuminant independent

descriptors, but also reduces the effect of metamerism1. Given the
difference in dimension between tri-chromatic device responses
and surface spectral signals, a multi–spectral approach is more
suitable.

In a multi–spectral (or hyper–spectral) colour–acquisition
device the surface colour properties of surfaces in a scene are fil-
tered more finely than in tri-chromatic devices. Instead of em-
ploying three broad colour filters, effectively more filters are used
to measure a higher dimensional representation of surface colour.
While the majority of devices do not measure spectral reflectance
directly without error, it is possible to achieve better estimation
accuracy compared to tri-chromatic devices. Note however that
even if a multi-spectral device has more linearly independent
colour filters2, representing surface colour with a higher dimen-
sional response vector compared to the dimensionality of surface
spectral reflectance, it does not mean that the device is necessarily
error–free. Furthermore, while the phenomenon of metamerism is
greatly reduced, it is still present in multi–spectral acquisition.

An acquisition device can be thought of as a linear transform,
mapping surface spectral reflectances to representations within
the space of the device. Unless the linear space spanned by the
device’s spectral sensitivities and the space spanned by surface
spectral reflectances are within a linear transform of each other,
metamerism will theoretically exist. So, even for devices with
more sensors it is necessary to perform some form of estimation
algorithm from response to surface spectral reflectance. In this
paper a number of such techniques are examined and evaluated.

It has been argued that techniques based on statistical knowl-
edge of the space of surface spectral reflectances, such as Princi-
pal Component Analysis (PCA or Characteristic Vector Analysis
(CVA) are superior to other methods[3, 4]. All but one method
considered in this paper indeed make use of PCA, in order to rep-
resent surface spectral reflectances in a lower dimensional linear
model. The methods considered in this paper can be further clas-
sified in two classes: approaches based on a least squares min-
imisation (unconstrained linear least squares, constrained linear
least squares using a Wiener filter[24] or regularising the solution
using Tikhonov regularisation[27, 6]) and the Metamer Set Max-
imum Likelihood method[21].

In order to evaluate reflectance estimation methods for multi-
spectral colour-acquisition devices, the 6 band multi-spectral
(6B–HDTV) video camera spectral sensitivities, developed as
part of the Akasaka Natural Vision project (NVP)[22, 32], have
been used. There are several other approaches to mutli-spectral

1Reflectance estimation is a more general form of the problem of de-
vice characterisation. The former solves the latter as well, since from an
accurately estimated reflectance, accurate CIE XYZ values can be had.

2Such that none of the filters can be substituted as a combination of
the remaining ones.
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imaging, such as tunable liquid-crystal filters, solid-state filter
wheels[3], interferometry based devices[7], and others. However,
the majority is used for digital still images instead of video. Multi-
spectral digital video is an emerging technology used at present
mainly in tele-medicine and high definition video. High accuracy
of spectral estimation is particularly important in the former field,
as diagnoses are often made based primarily on colour[32].

Results are presented on a set of 2086 reflectances includ-
ing natural as well as man-made surfaces, showing statistically
significant benefit in estimation accuracy by using a metamer
set based technique. However, results using regularised, con-
strained least-squares techniques also offer high estimation accu-
racy from multi-spectral device responses, with the advantage of
being faster to compute and easier to implement.

The article is organised as follows. First the mathematical
background for reflectance estimation is established, introducing
colour image formation as well as the linear model representa-
tion of surface spectral reflectances. Then, each of the considered
estimation techniques is briefly introduced as well as a measure
to evaluate the methods is presented. Experimental set-up, results
and discussion are given afterwards. Finally some conclusions are
drawn from the experiments.

Background
Let Si(λ ) be the i-th sensor spectral sensitivity (i = 1, . . . ,N),

E(λ ) the illuminant spectral power distribution, R(λ ) the surface
spectral reflectance of a surface in a scene, ρi the i-th response
to the surface and ω the interval of visible wavelengths. Colour
image formation is then defined through the integral equation:

ρi =
∫

ω

Si(λ )E(λ )R j(λ )dλ (1)

Assuming each quantity is represented as a discrete vector
sampled at q equi-distant sampling points (e. g. q = 31 sampling
points for ω = [400,700]nm at a dλ = 10nm sampling frequency),
then S can be denoted as the q×N matrix of N device spectral
sensitivities, e the q× 1 vector of illuminant spectral power dis-
tribution and r the q×1 vector of surface spectral reflectance and
ρ the N×1 response vector (the RGB for tri-chromatic devices).
Colour image formation can be re-written in matrix algebra form
as:

ρ = ST D(e)r (2)

where T is the vector transpose operator and D() transforms a
column vector into a diagonal matrix, with the vector elements
along the diagonal of the matrix.

Surface spectral reflectance estimation amounts to inverting
Eq. 2, i.e. solving for r given ρ and assuming linear response
of a device with known spectral sensitivities S captured under a
known light source with illuminant spectral power distribution e.

Surface spectral reflectances can be well described by a small
number of basis vectors within a linear model representation[17].
The number of basis vectors needed to represent reflectances
varies depending on the data, but as a rule of thumb between 5
and 10 bases suffice. Let B be the q×D matrix of D basis vectors,
such that 3≤D≤ q. A reflectance r can then be approximated as:

r ≈ Bσ (3)

where σ is the the D×1 vector of linear model weights, represent-
ing surface spectral reflectance within the basis B. Depending on
how well matrix B spans the space of surface spectral reflectances
it represents, the approximation in Eq. (3) is more or less accu-
rate. Assuming the knowledge of a set of reflectances that are
representative of the surfaces that might be observed, statistical
tools such as Principal Component Analysis[19] serve to find the
smallest number of bases that best represent the given data.

Within this representation, colour image formation can be
re-written as:

ρ = ST D(e)Bσ (4)

Under this assumption, estimating the surface spectral reflectance
amounts to solving for the σ given ρ , since σ corresponds to a
reflectance r through matrix B.

Let L = ST D(e)B, also referred to as the lighting matrix[18]
relating linear model weights and sensor responses, then colour
image formation becomes:

ρ = Lσ (5)

This is a system of N linear equations (one per sensor) of D
unknowns (one per linear model dimension). Since in general
N �D, the system is referred to as under–determined and has no
unique solution.

Unconstrained Linear Least Squares (LSQ)
A straight–forward way to solve under–determined linear

systems of equations is to find a linear mapping matrix that min-
imises the error in the sum-of-squares sense. Let X be a M×N
matrix of responses ρ to M surfaces, and Y a M×D matrix of lin-
ear model weights σ corresponding to the same M surfaces. Then
the linear least squares minimisation can be found as:

min
T

‖ XT−Y ‖ (6)

where ‖ · ‖ is the L2 Euclidean norm.
The solution to this minimisation is defined as T =

(XT X)−1XT Y and writing X+ = (XT X)−1XT where + denotes
the Moore-Penrose (Pseudo) inverse, Eq. (6) is solved as:

T = X+Y (7)

An alternative way of looking at the problem from the same,
error-minimisation perspective is to assume knowledge of sensor
spectral sensitivities, illuminant and a linear model basis, com-
bined in the N ×D matrix L, and solve for a data-independent
linear mapping, again in the least-squares sense:

T = (LT L)−1LT (8)

In general however, this approach performs less well than the
data-driven linear least squares matrix in Eq. (7), hence we only
consider the former method.

Constrained Least Squares - Tikhonov Regulari-
sation (LSQT)

A simple least squares matrix need not be a good fit when
applied to data other than that used to derive itself (i.e. the train-
ing set). A consequence is that the condition number3 of T might

3The ratio of the largest and smallest singular value in the singular
value decomposition of a matrix.
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be very large, meaning it’s inverse could be difficult to compute
due to computational precision. It is therefore desirable to regu-
larise this solution. Instead of solving for the simple least squares
matrix, a new optimisation can be formulated as follows:

min
T

‖ XT−Y ‖+α ‖ T ‖ (9)

where α is a weighting factor of the norm of the sought transform.
In effect this amounts to adding a penalty term associated with the
norm of the transformation matrix. This approach is known as the
Tikhonov regularisation[6]. The solution to Eq. (9) can be derived
directly as:

T = Z+XT Y (10)

Z = XT X+αI (11)

where I is the N×N identity matrix.
Finding the weighting factor α is non-trivial. For the purpose

of this experiment a simple routine based on Newton’s iterative
bisection technique was implemented to find the α that results in
minimal error for the training set.

Constrained Least Squares - Wiener (LSQW)
Another way to regularise the solution of the least squares

problem is to assume more knowledge about the estimated quan-
tities, the suraface reflectances. Let the D×D matrix C be the
covariance matrix of a set of representative surface spectral re-
flectances (the training set), then the matrix T mapping ρ to r can
be solved for as[24]:

T = CLT (LCLT )−1 (12)

Note that this method does not employ the linear model rep-
resentation and neither does it build on PCA. However, including
the covariance matrix in the solution does make use of statistical
knowledge about the estimated surface spectral reflectances and
has been extensively used in reflectance estimation (e.g [11]).

Metamer Set Based Estimation
In metamer set based estimation[21] first the entire set of

plausible surface reflectance estimates, the metamer set is solved
for and then, at a second stage, one reflectance from within this
set is chosen as the estimate.

The existence of the metamer set follows from the under–
determined nature of Eq. (5), the colour image formation equa-
tions. Since Eq. (5) is a set of N linear equations of D unknowns,
and N < D, it follows that there are at least D−N degrees of free-
dom. In other words, matrix L spans at most N dimensions assum-
ing linearly independent spectral sensitivities of the device. The
remaining D−N dimensions are the so-called metameric black
space (or null-space or kernel) of the system, as they span the
space that results in responses of zeros.

The metamer set is defined as:

M (ρ) = {σ i|ρ = Lσ i} (13)

that is, a set of linear model weights σ i that induce identical
response ρ , such that all σ i correspond to surface spectral re-
flectances that are “natural”.

A reflectance is natural if and only if it can be written as a
convex combination4 of a set of representative, real reflectances
from a training set. In other words, all reflectances in the metamer
sets are within a convex polyhedron described by the extreme ver-
tices of the set of representative reflectances[8, 10].

In order to chose a single representative metamer we assume
a probability distribution of reflectances within the metamer set
and choose the most likely reflectance. Let us denote the probabil-
ity of σ as P(σ) and conditional probability, that is the probability
of σ given ρ , as P(σ |ρ) then the maximum likelihood estimate is
found by solving:

max
∀σ i∈M (ρ)

P(σ i|ρ) (14)

that is, maximise the probability of σ given the known response
vector ρ . We assume a truncated normal distribution, which has
been successfully employed before[9, 33].

Other Methods
The methods described above are by no means a complete

and exhaustive list. There are other known approaches to estimat-
ing reflectances from device responses. In what follows a brief
reference is given to some. However, many of these approaches
start from different premises, solving more specific or more gen-
eral versions of the present problem, or have different objectives
such as colour correction.

van Trigt’s “smoothest reflectance” estimates[28] (and their
discrete optimisation solution by Li and Luo[16]) are an elegant
way to analytically solve for the reflectance that is the smoothest
possible function. While reflectances are smoothly varying func-
tions, they need not necessarily be the smoothest possible, hence
this method has been found to give high estimation error[21]. The
Hawkyard method [12, 2] can estimate reflectances to a high ac-
curacy in terms of CIE L*a*b* ∆E for a single or small number
of illuminants, however results in high estimation error for illumi-
nants not used to derive the reflectances[5]. Shi and Healey[26]
presented a method that, similarly to the Metamer Set based meth-
ods described above, employs higher dimensional linear models
for mapping device responses to device independent CIE XYZs,
while estimating surface spectral reflectance as an intermediate
step. This method performs very well if training and testing on
the same data set however gives considerably worse results oth-
erwise. Dupont[5] presents and compares other numerical opti-
misation techniques such as simulated annealing, linear program-
ming and genetic algorithms, from the point of view of achieving
accurate colorimetric matches and minimise metamerism.

Error Measures
Let r̂ denote the estimated surface spectral reflectance and r

the original, sought spectral reflectance. The estimation accuracy
is evaluated in terms of spectral error.

Spectral error, denoted henceforth ∆, is the L2 Euclidean dis-
tance between r̂ and r:

∆ =‖ r̂− r ‖=
√

∑
i

(r̂i− ri)2 (15)

4A convex combination is a weighted linear combination with weights
summing to 1 while being non-negative and less than 1.
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There are several other ways to express the accuracy of spec-
tral matches. The aim in this investigation however is general
accuracy, irrespective of viewing conditions such as observers or
illuminants. Hence the dominant measure considered here is the
spectral error ∆. This has been found to be a good choice given
the objective [29].

In addition however, CIE L*a*b* ∆E colour differences are
also reported, as an approximate, informative measure. Note how-
ever that the correlation between the two error measures is weak
(the correlation coefficient between ∆ and CIE ∆E for 16688
pairs of estimate and original reflectances is R = 0.7250), due
to the non-linear nature of the transform from reflectance to CIE
L*a*b*.

Finally, feasibility, denoted F , is also examined. This is a
simple test as to whether the estimated reflectance can be consid-
ered indeed a feasible reflectance and thus has no negatives, nor
values above 1. In the results section, F is given as a %–value, re-
ferring to the proportion of estimates that are feasible reflectances.

Experimental Set-up
The spectral estimation algorithms are tested on synthetic

data. The set of surface spectral reflectances used as the train-
ing and testing sets are made up of the following data sets:
the Macbeth Colorchecker Chart (24)[20], Munsell paper chips
(1269)[23], the Vrhel and Gershon’s Object set (170)[30], Kri-
nov’s Natural set (219)[15] and Westland et al.’s set (404)[31].
In total, the surface spectral reflectances used in the experiments
amount to a set of 2086 samples.

Three training and testing strategies are reported. In the
first experiment training is performed on the 24 Macbeth Col-
orChecker Chart surfaces, while testing on all 2086 samples. This
training set is a small and not necessarily representative set that,
however, is a common standard chart used for calibration and
characterisation. In the second experiment training is performed
on a random half (1043) of all reflectances from the set and tested
on the remaining 1043. Finally, we also report results using the
entire set of 2086 reflectances for training and testing. While this
is the least robust test, it shows ideal performance of the algo-
rithms.

The training sets were used for determining the linear model
basis vector matrix B, the linear least squares (constrained and
unconstrained) mapping matrices T for methods LSQ, LSQT and
LSQW, and the covariance matrix for LSQW.

Each algorithm under each of the training and testing condi-
tions was evaluated using the 6B–HDTV sensor set as well as a set
of spectral sensitivities of a standard 3 channel RGB digital still
camera for comparison (see Fig. 1). An equi–energy illuminant
was used as the scene illuminant.

To establish the correct linear model dimension the 2086 sur-
face spectral reflectances were examined in terms of the error
arising from a representation using a linear model of a particu-
lar dimension. The error was evaluated using both the ∆ and the
∆E measures. A linear model dimension of 8 was found to be
sufficiently high for the given purposes as it resulted in a negligi-
ble average and acceptable maximum estimation error in terms of
both spectral error ∆ and perceptual error ∆E.
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Figure 1. HDTV sensitivities (top) and SONY RGB sensitivities (bottom).

Results and Discussion
In Tables 1, 2 and 3 the results of the reflectance estimation

experiments, as described above, in terms of all three error mea-
sures is reported. The smallest errors are shown in bold–face. In
Table 1, all algorithms used the 24 Macbeth ColorChecker Chart
reflectances as their training set, while testing on the entire set of
2086 samples. In Table 2, algorithms used a random half of the
2086 samples while testing on the other half and in Table 3 the
entire set was used to train and test the algorithms.

The mean and maximum estimation error summary statis-
tics are commonly reported in reflectance estimation literature
and hence are provided here as well. However, performing the
Jarque–Bera test[1] for goodness–of–fit to a normal distribution
on the error distributions from all tested algorithms shows that on
a 99% significance level (α = 0.01) we can reject the hypothe-
sis of a normal distribution. Therefore we also conducted another
statistical test of the error distributions in order to establish with
whether there is significance in the differences in performance of
the algorithms.

We employed the two–sample Kolmogorov–Smirnov (K–S)
test [14, 13] to compare distributions of two sets of estimation er-
rors and establish whether or not they are significantly different.
The K–S test is a non-parametric test making no assumption about
the nature of the underlying error distribution and we test for al-
ternative hypotheses determining whether the cumulative distri-
bution functions likely to correspond to the samples from the er-
ror distributions of different algorithms are smaller or larger or
simply unequal.

In Table 4 we show the results of the K–S test for α = 0.01
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6B–HDTV
µ∆ max ∆ µ∆E max ∆E F (%)

LSQ 0.48 1.65 3.25 24.71 33.4
LSQW 0.13 0.88 0.75 9.15 95.0
LSQT 0.10 0.80 0.57 6.16 98.4
MSML 0.10 0.82 0.58 5.96 100.0

RGB
µ∆ max ∆ µ∆E max ∆E F (%)

LSQ 0.67 2.06 7.94 79.71 88.6
LSQW 0.21 0.97 4.52 62.08 87.3
LSQT 0.18 0.94 4.43 51.96 95.3
MSML 0.18 0.91 4.33 25.46 100.0

Training: 24 Macbeths; Testing: all 2086 reflectances; Sen-
sors: 6B–HDTV device (top part), 3 channel RGB device (bot-
tom part).

6B–HDTV
µ∆ max ∆ µ∆E max ∆E F (%)

LSQ 0.45 1.57 1.36 5.58 0.0
LSQW 0.11 0.58 0.55 5.21 96.9
LSQT 0.09 0.52 0.48 4.67 97.9
MSML 0.09 0.52 0.46 3.48 100.0

RGB
µ∆ max ∆ µ∆E max ∆E F (%)

LSQ 0.66 2.05 8.15 90.02 38.6
LSQW 0.19 0.97 4.40 41.70 94.4
LSQT 0.18 0.92 4.36 43.31 95.1
MSML 0.16 0.82 3.90 25.42 100.0

Training: 1043 reflectances; Testing: remaining 1043 re-
flectances; Sensors: 6B–HDTV device (top part), 3 channel
RGB device (bottom part).

6B–HDTV
µ∆ max ∆ µ∆E max ∆E F (%)

LSQ 0.44 1.6 1.29 5.15 0.0
LSQW 0.10 0.78 0.56 10.29 96.8
LSQT 0.09 0.72 0.49 6.9 97.6
MSML 0.09 0.74 0.45 9.63 100.0

RGB
µ∆ max ∆ µ∆E max ∆E F (%)

LSQ 0.66 2.05 8.16 91.24 43.2
LSQW 0.19 0.97 4.43 43.45 94.9
LSQT 0.17 0.92 4.39 45.19 95.5
MSML 0.16 0.87 3.96 25.45 100.0

Training: all 2086 reflectances; Testing: all 2086 reflectances;
Sensors: 6B–HDTV device (top part), 3 channel RGB device
(bottom part).

LSQ LSQW LSQT MSML
LSQ - - -
LSQW + - -
LSQT + + -
MSML + + +

Kolmogorov–Smirnov two sample test of reflectance estima-
tion algorithms. A −/+ in row i and column j means that al-
gorithm i is significantly worse/better, in terms of the ∆ metric
compared to algorithm j.

(i.e. at a 99% significance level) for the case of training on the
24 patches of the Macbeth ColorChecker chart against testing on
the entire set of 2086 reflectances – corresponding to the results
shown in Table 1.

The K–S test shows that the Metamer Set Maximum Like-
lihood method is best, followed by Tikhonov Regularised LSQ,
Wiener LSQ and finally simple LSQ. The results in terms of mean
and maximum ∆ (and ∆E) in Table 1 for MSML and LSQT are
very similar, however the K–S test shows statistically significant
superiority of the Metamer Set method. The K–S test for the other
two training–testing set-ups is also similar, although for the ideal
case, when training and testing is performed on the same data,
LSQT gives better results. This can be explained by the fact that
the α parameter in this case is optimised such that it results in
smallest possible error for the testing set.

Our results are in line with previous findings, that simple,
unconstrained linear least squares does not work well. This ap-
proach gives a high maximum error and on average is the worst
performing method. Constrained least squares methods give sig-
nificantly better results - both the Wiener and the Tikhonov regu-
larisation approach reduce maximum error and on average work
very well, with Tikhonov resulting in smaller estimation error and
approaching the performance of the Metamer Set Maximum Like-
lihood approach.

A ∆ of 0.1 and a ∆E of 0.5, common performances for both
the constrained least–squares methods as well as the metamer set
maximum likelihood method, are very small errors and mean very
high accuracy. The mean errors for the 3 channel RGB camera
are, in comparison, almost twice higher in the reflectance domain
and significantly above the just–noticeable 1 ∆E threshold. Thus,
given a 6 channel device and using an appropriate estimation tech-
nique we are able to estimate reflectance very well. What also
needs to be considered however, is the feasibility of the estimates
– whether the estimated reflectances are indeed physically possi-
ble surface spectral reflectances.

None of the constrained or unconstrained least squares meth-
ods guarantee physical realisability – it is possible that the re-
sulting estimate has negatives or values above 1. The feasibility
measure F in some cases is below 40%, while constrained leas
squares methods LSQW and LSQT have a feasibility of over 90%.
The Metamer Set method instead is by design such that 100% of
estimates are physically possible reflectances.

Other factors will influence the choice of reflectance estima-
tion algorithm for multi–spectral imaging, such as computational
expense and accuracy requirements. While for fine–art, high–
quality reproductions the Metamer Set based method seems to
be of most interest, it may be less appropriate in the case of live
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High Definition Video or tele–medicine where speed is important.
There is a significant difference between the two methods with
highest accuracy. Metamer Set computation involves the calcu-
lation of convex hulls[25], and the subsequent Maximum Like-
lihood choice requires the solution of a Quadratic Programming
problem. Compared to the simple matrix multiplication by which
LSQT can be implemented, this is a considerable overhead. Thus
depending on the application and the requirement for accuracy,
either of the two methods can be appropriate.

A final and important aspect not considered here is noise.
Good results have been achieved with the Metamer Set Maxi-
mum Likelihood method for 3 channel RGB cameras[21]. How-
ever, given the overall higher accuracy of estimation in the multi–
spectral case, this needs further investigation.

Conclusions
In this paper the problem of estimating surface spectral re-

flectances from multi-spectral device responses was addressed.
Four approaches have been compared in terms of spectral recon-
struction accuracy: unconstrained linear least squares, Wiener lin-
ear least squares and Tikhonov regularised linear least squares, as
well as the Metmer Set based Maximum Likelihood method.

The experiments conducted in this paper have shown that
there is significant benefit in introducing regularisation constraints
to the simple least squares approach and that there is further ben-
efit in accuracy and feasibility in using the Metamer Set based
estimation technique.
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