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Abstract
An experiment was done to explore the noise and color

saturation trade-offs in color processing of digital camera im-
ages.Usually pixel noise during capture is amplified when the
color saturation is dialed up in the image processing. The data
collected in the present study allow us to understand how per-
ceptual preference changes along the noise and color saturation
trade-off continuum. This makes it possible to pick the most pre-
ferred point on the noise-saturation trade-off line for individual
cameras.

Introduction
Engineers and scientists working in the color processing of

digitally captured images are well aware of the trade-off between
noise amplification and color saturation. Saturation enhancement
can result in higher visual noise in the image. On the other
hand, image noise can be reduced by minimizing the negative
off-diagonal terms of the color correction matrix, at the cost of
desaturated colors.

Noise and color saturation preference is highly subjective.
Some people may like bright colors and tolerate graininess, some
may like smooth pictures and tolerate muted colors. Given the
noise properties of a particular camera system and the light level
during capture, we are interested in finding an optimal level of
color saturation in color correction, so that the pixel noise is not
amplified to a level that is unpleasant to the observer. The experi-
ments reported here were designed to give us a relative preference
map in the noise and color saturation space, so that we can pick
out preferred noise-saturation trade-off points at different SNR
levels for any sensor.

Experiment design
Due to the high-variance nature of preference experiments,

we chose to use the relatively stable paired-comparison method
for our study, and ran the experiments using a large number of
subjects. To reach a large number of willing participants, we con-
ducted the experiment on Agilent Technologies internal websites.
However, it is difficult to control viewing condition and display
calibration when subjects could be sitting anywhere using any
computer within the company. To test sensitivity of the results to
display calibration and ambient lighting, a pilot experiment was
done first with a small number of subjects both in a controlled
imaging laboratory and on desk computers. The pilot experiment
confirmed that the preference result was not sensitive to changes
in ambient lighting and typical display variation.

Image preparation
For test images shown to subjects, we used 12 raw images

captured on a few different cameras, including a consumer digi-

tal camera made by Hewlett Packard, a consumer digital camera
made by Kodak, and CMOS image sensors made by Agilent Tech-
nologies. The images were all captured under high ambient light
level, and thus were low noise to begin with. They were further
downsampled through binning to smaller sizes, further reducing
noise. These images were assumed to be noise-free. The con-
tents of the images included landscape, people, animal, and still
objects, and included both indoor and outdoor scenes.

Spatially independent pseudo-random additive gaussian
noises were added to the raw images to generate 5 different levels
of noise per original image. The noise standard deviation var-
ied among different images and different color saturation levels,
with the constraint that the final processed image had average S-
CIELAB ∆E94 [1] values of 0, 1.2, 2.4, 3.6, and 4.8. The use of
S-CIELAB ∆E94 values instead of standard deviation or SNR for
noise specification is to ensure the generalization of experimental
data to other sensors and image pipelines which likely will em-
ploy different demosaic and denoising algorithms.

Aside from the noise levels, each image was also rendered at
5 different color saturation levels through adjustment of the color
correction matrix. The color matrices were generated from spec-
tral sensitivity measurements of each camera using a Bayesian
method [2]. For each camera and scene illuminant, a full satura-
tion color matrix was generated assuming RLab adapation [3] at
1000cd/m2 scene light level. Then a monochrome matrix, which
gave luminance (Y ) estimates, were generated using the same
Bayesian method. Images of different saturation levels were gen-
erated by color correcting with a weighted combination of the full
color matrix and the monochrome matrix. Figure 1 shows the re-
lationship between color matrix saturation (expressed as percent-
age of full color matrix used) and a perceptual saturation measure
(CIECAM97s [4] saturation value of the Macbeth red patch). Sat-
uration levels 0, 0.25, 0.5, 0.75, and 1.0 were used for the pilot
experiment, and levels 0.1, 0.25, 0.5, 0.75, and 1.0 were used for
the web-based full experiment.

After noise injection, the images were processed with a ba-
sic camera image pipeline, with demosaicking, white balance and
color correction (at 5 different color saturation levels), and dis-
play gamma correction. Steps that would affect noise and color
saturation properties, such as denoising, non-linear tone mapping,
and highlight desaturation were not used, to ensure the effect of
color correction on noise amplification is reflected in the final im-
age. For each near noise-free raw image, a total of 25 versions
were rendered at 5 noise levels and 5 color saturation levels.

Design and procedures
Subjective preference data were obtained using a paired

comparison method. For each trial, subjects were shown two dif-
ferent renderings of the same original image, and asked to select
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Figure 1. Perceptual color saturation level as a function of percentage of full color

matrix used in processing an image. For 3 sensors with very different spectral proper-

ties, the perceptual saturation levels correspond well with the percentage of full color

matrix used.

the version they prefer (the version they would choose to keep in
a digital album).

Due to the large number (25) of renderings per image, not
all possible pairings were presented to the subjects to avoid te-
diousness. Pairings that would have an obvious preference (e.g.
same color saturation, higher vs lower noise, or same noise level,
higher vs lower color saturation, or high saturation low noise vs
high noise low saturation) were not included in the comparisons.
After eliminating the “obvious” pairings, 25 paired versions were
left per image. This is still a lot of paired comparisons to do.
To reduce tediousness for subjects in the web experiments, we
further reduced the number of pairings per image to 13, and dis-
tributed the complete list of pairings across different subjects. For
the web experiment, each subject completed 156 paired compar-
isons, which included 12 different images, each with 13 pairs of
comparisons. For the pilot experiments (which had more moti-
vated subjects), each subject completed 300 paired comparisons,
including the same 12 images, each with 25 pairs of comparisons.

The main experiment was conducted using a web interface.
A JAVA paired-comparison program was written to control the
presentation of images and recording of data over the web. To
participate in the experiment, subjects went to an internally adver-
tised web site. They first read a brief introduction and instructions
to the experiment, which asked them to maximize the browser
window, and make sure the display was set at 24 or 32 bit depth.
Afterwards, they completed 156 paired comparisons by compar-
ing two side-by-side images and clicking on a button below the
image they prefer. After the experiment, they were asked to es-
timate the gamma value of their displays using a visual tool [5].
The paired comparison data and the estimated gamma values were
both recorded.

For part of the pilot experiment, the paired comparisons were
done on a calibrated computer in a controlled lab environment,
with the experiment program run in Matlab. The set up was oth-
erwise very similar to the web experiment.

Data analysis
The experimental design of the present study required paired

comparisons among 25 different renderings (300 possible pair-
ings) per image. To keep the length of the study tolerable for sub-
jects, at most one trial per possible pairing was done by each sub-
ject. Existing methods to convert binary data to interval data typ-
ically require non-unanimous responses per comparison to give
reliable scale estimates [6, 7]. To use these scaling techniques on
our data, we could lump together different subjects’ responses for
the preference scale estimates, and then use a resampling pro-
cedure to get an estimate of between-subject variation. How-
ever, one of the things we wanted to check was whether there
were qualitative differences among different subjects’ results (e.g.
whether there are sub-groups of subjects who just looked at image
noise, and others who only looked at color when doing the com-
parisons), for which preference scale estimates for each individ-
ual subject would be useful. Therefore, we developed a method to
convert individual subject’s paired comparison responses into an
interval scale which works well even when the number of trials
per comparison is low, and when not all possible pairings were
tested for a particular set of samples.

The details of our scaling method is outside the scope of this
presentation, and will be the subject of another paper. Very briefly,
we used a Bayesian method, and specified prior distributions on
the relative perceptual distance between the samples. Without any
data we assume all samples are indistinguishable from each other,
but it is possible for the distances to take on any value accord-
ing to a normal distribution centered at zero. Paired comparison
data, even when incomplete, can be used to derive a posterior dis-
tribution of the relative perceptual distances, which then put the
samples on an interval scale. Testing with simulated data showed
the method to be very stable with respect to unanimous responses
and incomplete pairings. All paired comparison data from our
experiments were converted to interval data using this technique.

Pilot experiment and results
Before the large scale web experiment, we conducted a pi-

lot experiment with a small number of subjects to investigate the
effect of viewing environment (light surround vs dark surround),
which was not controlled in the web study; and to check consis-
tency of data across subjects, across images, between different
demosaic methods, and between web-based and lab-based exper-
iments.

A total of 8 subjects, 7 males and 1 female, participated in
the first pilot experiment, which was conducted in an imaging lab
with a calibrated (very close to sRGB) display, and controlled
lighting. Half of the subjects did the experiment in complete
darkness, half did the experiment with overhead fluorescent illu-
mination measured at 326 lux at the display location. All subjects
completed 300 paired comparions between different renderings of
12 different images as described before. The paired comparisons
were converted to interval data. Figure 2 shows the comparison
of relative preference scale of different renderings under the light
and the dark viewing conditions. The preference results seem to
be relatively insensitive to moderation variation in ambient light
level.

Figure 3 shows the preference scales compiled for different
source images. Again, aside from a general variation of the data,
no systematic deviation as a functions of image type emerged
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Figure 2. Comparison of preference results when images were viewed under light

vs dark surround. The error bars were calculated among the 4 subjects’ results in

each lighting condition. No significant difference was found.

from the data, showing a general insensitivity of the preference
data to scene type.
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Figure 3. Comparison of preference results among different image contents.

Figure 4 shows the variation of preference scales for individ-
ual subjects in the pilot experiment. The 8 subjects included 4
people in the imaging field (expert viewers), and 4 naive subjects.
Again, aside from general variability of the data, subjects’ results
were largely consistent, with no clear diverging patterns.

For our second pilot experiment, 6 subjects from the first
experiment did the experiment again using the same images pro-
cessed with a different demosaic method. The demosaic method
used in the first pilot experiment was a Bayesian convolution
method [8], and the method used for the second experiment was
a proprietary directional linear interpolation method. The first
method used a large kernel, and resulted in much higher local
correlation of noise than the second method. Our goal is to check
whether characterization of noise using the S-CIELAB ∆E metric
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Figure 4. Comparison of preference results among different subjects in the pilot

experiment.

for this purpose is sufficient when the type of noise is different.
Figure 5 shows the preference scales for different renderings when
comparing the two different demosaic methods. Again, no signif-
icant difference was found if the final noise levels were similar
according to the S-CIELAB metric.
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Figure 5. Comparison of preference results when images were processed with

different demosaic algorithms. Error bars were calculated among 6 subjects who

participated in pilot experiments one and two.

For the third pilot experiment, three subjects completed the
same experiment as the first pilot experiment, this time using a
web interface, and on un-calibrated displays on their desk, with
ambient office lighting. Figure 6 shows the consistency of the
preference results between the web-based version and the lab-
based version. The general pattern of preference is consistent
between the two data collection modes.

The pilot experiments confirmed that the noise-saturation
trade-off preferences for digital images are relatively insenstive
(to the first order) to ambient lighting condition, small variations
in display calibration, image content, and individual subject vari-
ation. We felt comfortable in proceeding to the large-scale web-
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Figure 6. Comparison of preference results between web-collected data and lab-

collected data in third pilot experiment.

based experiment.

Web experiment and results
In order to recruit a large number of naive subjects in the

preferece experiment, we advertised the study in Agilent’s inter-
nal newsletter to all US employees, including research facilities,
sales organizations, and factories. All participants who completed
the experiment were entered into a prize drawing for 2 digital
cameras.

In the web experiment, each subject viewed 156 pairs of im-
ages (two different renderings of the same scene each time, total
of 12 scenes) side-by-side in the web browser, controlled by a
java program. They were allowed as much time as possible for
each trial. They clicked on a button below the image version they
prefer to indicate their preference, and clicked on a “continue”
button to move to the next paired comparison. The “continue”
button was activated only after a preference choice was made, to
discourage subjects from clicking through the experiment without
actually making a preference choice.

At the end of the experiment, subjects were asked to estimate
the gamma value of their displays using a visual tool [5]. They
were then asked to provide an email address volunteerily if they
wanted to enter into the prize drawing.

A total of 1010 subjects completed the experiment during
the 20 day period the experiment site was open. For each subject,
paired comparison data for different source images were lumped
together, and converted to an interval preference scale as a func-
tion of color saturation (in percentage of full color matrix) and
noise level (in S-CIELAB ∆E). Each of the 1010 individual pref-
erence surfaces (preference scaled plotted agains color saturation
and noise level) were inspected, and they were all substantially
similar in shape to each other. This provided some confidence that
the subjects were indeed cooperating and making serious compar-
isons.

The avearage preference scales for all subjects, along with
the error bars, are plotted in figure 7. The mean preference scales
shown in the plot are also listed in Table .

The preference surface shows nothing surprising. Subjects
preferred rendering with lower noise, and with higher color satu-
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Figure 7. Preference surface for images with different color saturation and noise

levels, averaged over 1010 subjects.

Average preference scales for different saturation and noise levels.

saturation
noise ∆E 0.1 0.25 0.5 0.75 1.0

0 0.56 1.45 2.32 2.62 2.46
1.2 -1.24 0.79 1.77 2.10 2.05
2.4 -1.50 -0.55 0.43 0.85 0.97
3.6 -2.56 -1.67 -0.70 -0.25 -0.12
4.8 -3.13 -2.52 -1.69 -1.28 -1.17

ration to an extent (after which the preference level asymptotes,
and possibly will drop if saturation goes up further). If we are
free to move about the noise and saturation space, the zero-noise,
full-saturation corner is obviously where we want to be.

However, for most cameras, it is not possible to achieve both
optimal noise level and color saturation at the same time. For any
given lighting and exposure level on a digital camera, which gives
a particular signal-to-noise-ratio (SNR), the color processing re-
sults can vary along a line in the saturation and noise space, and
thus this preference surface data becomes useful in finding the
most preferred point along those noise-saturation tradeoff lines
for different SNR levels of a particular camera.

Using preference data to find optimal noise-
saturation trade-off for a sensor

Here we show an example of using the preference data to
guide the choice of optimal noise-saturation trade-off points for a
particular sensor and exposure setting. The preference data were
given as a function of color saturation specified as percentage
of full color matrix calculated assuming 1000 cd/m2 scene light
level in the RLab adapatation model [3], and noise level calcu-
lated as mean S-CIELAB ∆E [1] values on the final processed
image. In general, for a fixed raw image SNR level, increased
color saturation is related to increased perceptual noise. For dif-
ferent sensors, the perceptual noise level is related to the color
saturation level by a different function, and need to be calculated
specifically for each sensor.

Figure 8 shows the saturation-noise trade-off lines plotted on
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top of the preference surface for a particular sensor at raw image
SNR levels from 5 to a little over 100. The noise levels were cal-
culated by simulating a noise-injected medium (20at the specified
color saturation level for this sensor, and then calculating the S-
CIELAB ∆E values from a uniform grey patch. When SNR level
is high, increasing color saturation does not increase noise level
by much (solid black line along upper right edge of plot); when
SNR level is low, increasing color saturation has a large impact in
perceived noise (solid black lines diagonally across the middle of
the surface).
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Figure 8. Interpolated preference surface with saturation-noise trade-off lines plot-

ted on top for a particular sensor at different raw image SNR levels.

If we plot the preference scales in Figure 8 as a function of
color saturation for each of these trade-off lines at different raw
SNR levels, as shown in Figure 9, we can easily find out the most-
preferred color saturation levels at different raw SNR levels for
this sensor. It is easy to see that at high SNR levels (top lines),
the optimal color saturation levels are uni-modal and on the high
saturation end, i.e. when noise is low, users prefer high color sat-
uration in the image. When raw SNR is very low (bottom lines),
the optimal color saturation levels are also uni-modal, but on the
low end of the saturation scale. This means when raw noise level
is high, user prefer lower color saturation so that noise in the fi-
nal image is not amplified too much. When raw SNR level is
medium (middle lines), then the preference values are sometimes
bi-modal, with two peaks at medium saturation level and low sat-
uration level. This might mean that when raw noise level is mod-
erate, there are two “sweet spots” on the saturation-noise trade-off
line: one is a “noise-dominating” mode, where lower color satu-
ration is preferred to reduce final perceptual noise; another is a
“color-dominating” mode, where higher color saturation is pre-
ferred at the cost of higher perceptual noise. It is interesting to
note that subjects sometimes pick either noise or color saturation
as the dominant concern, and do not always pick a “compromise”
when faced with the saturation-noise trade-off.

Summary
We have conducted a large scale web-based study, validated

by a series of smaller scale pilot studies conducted in the lab, to
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Figure 9. Preference scales along saturation-noise trade-off lines plotted as a func-

tion of color saturation level at different raw image SNR levels.

find out subjective preference of images in the noise and color
saturation space. This data can be used to guide the choice of
optimal noise-saturation trade-off in color processing of digitally
captured images.
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