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Abstract
Color filter array (CFA) based acquisition schemes allow

for the acquisition of color images with a single optical sensor
and are an integral part of most consumer-level digital camera
pipelines. The CFA is a mosaic of color filters overlaid on the
optical sensor such that only a single spectral band is acquired
at a particular location. There is thus simultaneous sampling
in the spectral and spatial dimensions. In this paper we pro-
pose a joint spatial-chromatic framework for the design of op-
timal spectral sensitivity functions for CFA filters. We design
optimal sensitivity functions for the Bayer and seven alternate
CFA arrangements and demonstrate the superior performance
of CFAs with optimized color filters with respect to standard
RGB and CMY filters in terms of both perceived quality and
the s-CIELab metric.

Introduction
The optical sensing elements in digital image acquisition

devices are typically charge coupled devices (CCD) or com-
plementary metal oxide semiconductors (CMOS) [1]. Both of
these sensor types are inherently monochromatic. The incident
radiation at each pixel of a sensor array is integrated over a
range of wavelengths (in which the device is sensitive) to give
intensity values over the sensor-array. To acquire color images,
filters that are sensitive in particular ranges in the visible spec-
trum are placed before the optical sensor-array in the imaging
pipeline. The sensor-array output is then the image band corre-
sponding to the color of the color filter. Since at least three
color bands are required to display an image, at least three
sensor-arrays with three different color filters are required to
acquire a color image.

Such multi-sensor acquisition schemes have several draw-
backs. The sensors and beam-splitters contribute substantially
to the cost of the camera (sensors are ∼ 25% of the cost of
typical digital camera [2]). Also, since the color bands are
acquired at different planes, a post-processing operation is re-
quired to correct for the associated misregistration. To avoid
the cost and complexity of multi-sensor acquisition systems,
most consumer-level digital color cameras only employ one
optical sensor. The sensor is overlaid with a color filter ar-
ray (CFA) such that only one color is sampled at each pixel
location. The full-color image is reconstructed from the sub-
sampled data in a later step commonly referred to as demo-
saicking. This spatial-chromatic sampling raises the following
key issues: the design of the sampling pattern, the design of
spectral transmittance functions for the colors filters, and fi-
nally, the design of the demosaicking algorithm.

The arrangement of color filters is designed based on a
number of disparate requirements. Lukac and Plataniotis [3]
provide a summary of CFA pattern design requirements and
an analysis of the performance of various RGB-type CFA pat-
terns. The most significant desirable feature of a CFA pattern,
particularly for devices that have limited computational capa-
bilities (cell-phone cameras, low-end digital still cameras, PDA
cameras, etc.), is the ease of demosaicking. Regular, repeated
CFA patterns work best to satisfy this requirement. Another
useful feature of uniform CFA patterns is their relative immu-
nity to optical and electrical cross-talk among pixels in the sen-
sor array. Cross-talk or leakage between adjoining differently
colored pixels can significantly alter the the effective spectral
transmittance function of a pixel. Regular patterns ensure a
measure of consistency in the transmittances of similarly col-
ored pixels across a sensor-array. A drawback of regular arrays
is that they may suffer from moire artifacts, or beats, in cases
where the scene has periodic patterns similar in frequency to
the period of the CFA pattern. Non-periodic CFA patterns alle-
viate this problem. Also, fixed-pattern noise in CMOS sensors
appears along columns of the sensor-array, and it is thus de-
sirable to have a random or pseudo-random patterns of color
filters for CFAs.

A number of CFA arrangements have appeared in the liter-
ature and been used commercially [4, 5, 6]. The periodic Bayer
array [7] (Fig. 1(a)), first proposed in 1976, is by far the most
popular CFA pattern. A notable feature of the Bayer array is
that green is sampled at twice the density of red and blue since
the luminance response of the human visual system (HVS) cor-
responds closely with the HVS response to the green range of
the spectrum. Figure 1 shows a number of common periodic
CFA arrangements.

The ability of any acquisition system to accurately repro-
duce color depends fundamentally on the sensitivity functions
of the color filters. Much research has been directed at the
problem of selection of spectral sensitivity functions in the
case where multiple colors are acquired at a single location
[8, 9, 10]. The selection of spectral sensitivity selection is all
the more critical for CFA based acquisition systems, but the
problem has received very little attention in the research com-
munity. In CFA based acquisition, in addition to the obvious
effect on color reproduction, the spatial-chromatic sampling
nature of CFA based schemes enforces a dependence of spa-
tial or luminance reconstruction quality on the spectral sensi-
tivity functions. Figure 2 shows typical spectral transmittance
functions for RGB and CMY color filters.

Since the effective use of inter-band correlation is criti-
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Figure 1. Common periodic CFAs. (a) Bayer [7], (b) Gindele [6], (c) Ya-

manaka [4], (d) Lukac, (e) striped, (f) diagonal striped [3], (g) CFA pattern

based on the Utah dot halftone (suggested by Charles M. Hains)
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Figure 2. Spectral sensitivity functions. Ordinates represent
transmittance, abscissae are wavelength in nm. (a),(b) RGB and
CYM transmittances respectively from ImagEval’s vCamera tool-
box [11].

cal to the performance of demosaicking algorithms (as seen in
the survey by Gunturk et al. in [12]), color filter sensitivity
functions that project incident radiance to a highly correlated
sub-space appear desirable. But, a high inter-channel correla-
tion has a detrimental effect on the discriminability of colors.
Alleysson et al. [13] demonstrate this trade-off between color
discrimination and spatial reconstruction quality.

In this paper we focus on the design of optimal spectral
sensitivity functions for the periodic CFA patterns shown in
Fig. 1. We use the optimal spectral sensitivity selection method
proposed in [14]. Significantly, the optimization method is

based on general image statistics and not on particular im-
aged scenes. A minimum MSE estimate of the image CIEXYZ
tristimulus values is used to define an error criterion that in-
corporates both spatial and chromatic errors in a perceptually
uniform color space. A constrained minimization of the cri-
terion yields optimal values of the color filter sensitivity func-
tions. Results are presented in the form of demosaicked images
and s-CIELab error values. The proposed sensitivity functions
perform significantly better than typical RGB and CMY filter
transmittances both objectively and subjectively.

Image formation Model
In this section we summarize the modeling and optimiza-

tion procedures detailed in [14]. Figure 3 depicts the image
formation process for an image acquired at a spatial location
in a sensor-array. Radiation from a light source is incident on
a point in the scene with reflectance x(λ ). The reflected beam
then travels through a color filter to an optical detector (CCD or
CMOS device) that has a sensitivity d(λ ). The signal obtained
at the detector is given by

c =
∫ λmax

λmin

f (λ )d(λ )x(λ )l(λ )dλ +η, (1)

where l(λ ) is the spectral power density of the illuminant, f (λ )
is the spectral transmittance of the color filter, and η is the
measurement noise. The detector is sensitive in the wavelength
range (λmin,λmax).

l(λ)

x(λ)
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x(λ)l(λ)

f(λ)x(λ)l(λ)

∫ λmax

λmin
f(λ)d(λ)x(λ)l(λ) dλ

Figure 3. Representation of the image formation process in color image

acquisition with color filters

In the discrete form (assuming that the visible spectrum
is adequately sampled when sampled every 10nm in the range
400-700 nm), the image formation model may be expressed as

c = MT Lx+η, (2)
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where x ∈ R
31×1 contains scene reflectance samples, L ∈

R
31×31 is a diagonal matrix with samples of the radiant spec-

trum of the illuminant along its diagonal, and M ∈ R
31×1 de-

scribes the combined filter-sensor response.
We extend (2) to describe the image formation model for

an m × n sensor-array that samples p color channels at each
pixel location. Let fi ∈ R

31×1, i = 1,2, · · · , p, describe the
sampled spectral sensitivity functions of the p colors and let
F = [ f T

1 , f T
2 , · · · , f T

p ]T . The image acquired at the sensor is
described by the vector

y = F̄L̄x+η. (3)

The scene is described by the vector of reflectance values
x = [xT

1 ,xT
2 , · · · ,xT

mn]T , where xi ∈ R
31×1,1 ≤ i ≤ mn are the

sampled reflectance spectra acquired at the mn distinct pixel
locations in the sensor array. The p-color image, y ∈ R

pmn×1,
is of the form y = [yT

1 ,yT
2 , · · · ,yT

p ]S, where yi ∈ R
mn×1 are

the column-ordered color channels. The matrix F̄ is con-
structed from fi and Li ∈ R

31×31 is diagonal with sampled
values of the illuminant spectrum as its diagonal elements.
The matrix of illuminant spectra L̄ in Eq. (3) is formed as
L̄ = diag(L1,L2, · · · ,Lmn).

In CFA-based image acquisition, only one color is sam-
pled at a particular location. The image formation model in
this case is

g = Sy. (4)

S is the sub-sampling matrix that reduces the pmn samples of
y to the vector g of size mn×1 such that we are left with only
one color sample at each pixel location.

The CIEXYZ space is the most commonly used device-
independent color space in colorimetry [15]. Let z = ĀL̄x be
the column ordered representation of the scene in the CIE XYZ
color space when viewed under the illuminant L. The matrix
Ā is formed from the color matching functions x̄, ȳ, and z̄ that
describe the CIEXYZ space.

We consider the noise-free case and assume wide sense
stationary signals. The LMMSE estimate ẑ of z with respect to
g is given by

ẑ = RzgR−1
gg g, (5)

where Rzg = E
{

zgT
}

, Rgg = E
{

ggT
}

. Substituting explicit
expressions for Rzg and Rgg gives

ẑ =
(

ĀL̄RxxL̄T F̄T ST
)(

SF̄L̄RxxL̄T F̄T ST
)−1

g. (6)

The block matrix Rxx has the spectral autocorrelation matri-
ces for each pixel location as its diagonal blocks, and has
inter-pixel spectral crosscorrelation matrices as its off-diagonal
blocks.

The XYZ tristimulus errors at each location of the array
are arranged in a column-ordered form to form the error vector

e = z− ẑ = (Ā−P)L̄x, (7)

where P =
(
ĀL̄RxxL̄T F̄T ST

)(
SF̄L̄RxxL̄T F̄T ST

)−1
SF̄.

Since errors in XYZ space do not reflect perceived differ-
ences in color, the error vector is transformed to the percep-
tually uniform linearized CIELab space. The error criterion is
formed as as the expectation of the 2-norm of the aggregated
CIELab errors at all spatial locations of the reconstructed p-
color image and can be reduced to the form

ΔE = tr
(

L̄RxxL̄T (Ā−P)T J̄T J̄(Ā−P)
)

. (8)

Figure 4 illustrates the formation of the error criterion, where
YyCxCz denotes the linearized CIELab space.

Multispectral scene
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XY Z → YyCxCzXY Z → YyCxCz

ẑ

(mn × 31)

Figure 4. The error criterion. All variables are as described in accom-

panying text.

The criterion is revised to account for image acquisition
under varying illuminants. Also, to ensure that the optimized
filter sensitivities are reasonably smooth (to account for manu-
facturing limitations), a penalty on their roughness is included
in the revised criterion:

Φ = ΔED65 +ΔED75 +Δ,Euniform + ε. (9)

where D65, D75 and uniform are standard illuminants and ε is
a cost on roughness.

Correlation matrix model
The correlation matrix Rxx is of the form

Rxx = E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

x1xT
1 x1xT

2 · · · x1xT
mn

x2xT
1 x2xT

2 · · · x2xT
mn

...
...

. . .
...

xmnxT
1 xmnxT

2 · · · xmnxT
mn

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

R(1,1) R(1,2) · · · R(1,mn)

R(2,1) R(2,2) · · · R(2,mn)

...
...

. . .
...

R(mn,1) R(mn,2) · · · R(mn,mn)

⎤
⎥⎥⎥⎥⎦ , (10)
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and contains elements due to the spectral correlation at a sin-
gle spatial location and spatial correlations across the image.
We will rely on a numerical optimization of (9) using Mat-
lab’s fmincon routine to arrive at an optimal value for F . The
routine carries out a gradient-based search for the minimum
and requires multiple computations of Φ and ∂Φ/∂ fi. This
requires multiple products of large-dimension matrices of the
type

(
SF̄L̄RxxL̄T F̄T ST

)
seen in (6). The challenge in model-

ing a generalized Rxx applicable for all acquired scenes lies in
forming blocks of Rxx that give it a regular structure that lends
itself to optimized computation while not defying the statistical
properties of any particular scene.

(a) Super-image (b) Proposed model

Figure 5. The spectral correlation matrix R(1,1) for (a) the super-image

obtained by accumulating spectral data from all the images in [16] (b) for

the proposed model.

Here, we make the following assumptions in forming Rxx:

1. The spectral correlation at a particular spatial location is
separable from the spatial correlation in samples across
the acquired image in a particular wavelength band.

2. The correlation coefficients that form the elements of
R(k,k) (10) are an exponential function of wavelength sep-
aration.

3. The correlation matrices R(k,l), that incorporate spatial
correlations in the image bands are an exponential func-
tion of spatial distance.

4. The acquired image is spatially periodic. This yields an
Rxx that is block-circulant with block-circulant Toeplitz
blocks.

Please see [14] for more details on the form of Rxx. Hord-
ley et al. [16] have provided a database of multi-spectral images
captured using a Spectracube c© camera. These spectral images
were acquired under controlled conditions under the D75 illu-
minant. A correction for the illuminant was applied to arrive at
reflectance values sampled every 10 nm in the range 400–700
nm. Figure 5 shows representations of R(1,1) for the proposed
model by considering all the multispectral images in [16].

Experiments
We use the proposed framework to obtain optimal color

filter transmittance functions for the CFA patterns in Fig. 1. A
constrained minimization of the criterion in (9) is carried out to
arrive at optimal estimates for the filter sensitivities represented

by fi for each CFA pattern. The constraints are that fi ∈ (0,1).
Since a global minimum is not assured, we generate a number
of distinct initial conditions and choose the least value of the
criterion to arrive at the filter sensitivities fi. Initial values of fi

are assumed to be Gaussian curves in the wavelength domain
and are given by

fi(λ ) = e
− (λ−μi)

2

σ2
i . (11)

An initial condition is defined by the vectors μ =
[μ1,μ2, · · · ,μp]T and σ = [σ1,σ2, · · · ,σp]T which contain the
means and standard deviations respectively of the p Gaussian
curves that represent the filter sensitivities. The elements of μ
and σ are uniform random variables defined over the visible
spectrum with the following constraints: 400 ≤ μi ≤ 700 and
ρ ≤ σi ≤ 10ρ , where ρ = 30. The optimal filter sensitivities
obtained for CFA pattern in Fig. 1 are shown in Fig. 6.

We used the database of multispectral images [16] for our
experiments. The simulation pipeline shown in Fig. 7 was used
to arrive at demosaicked images from the available multispec-
tral images and for later objective and subjective comparisons.
For comparison of spectral sensitivity functions, we used typi-
cal RGB and CMY filter sensitivities from ImagEval’s vCam-
era MATLAB toolbox [11](Fig. 2).

Since the object here is to compare the performance of
color filter sensitivity functions, we used the linear MMSE esti-
mator in (6) for demosaicking even though many sophisticated
demosaicking algorithms are known. The s-CIELab error met-
ric was used to quantify the error between the original image as
obtained from the XY Z values of the multispectral images and
the corresponding demosaicked images. Average s-CIELab ΔE
values of all images from the multispectral image database for
each of the CFA patterns in Fig. 1 as acquired with the RGB,
CMY, and the optimized sensitivities are given in Table 1. Ev-
idently, the optimized color filters perform significantly better
than the standard RGB and CMY filters.

Table 1: Average s-CIELab ΔE values. All images in [16] are
sampled according to the patterns in Fig. 1 and the demo-
saicked results are compared with the original multispectral
scene as shown in Fig. 7.

Pattern ΔEs RGB ΔEs CMY ΔEs optimal

(a) 6.0911 5.9310 3.2724
(b) 6.5438 5.8246 3.9508
(c) 6.5051 6.6076 3.9725
(d) 6.2251 6.3891 3.3761
(e) 7.3646 8.4028 5.1840
(f) 6.3924 6.3206 3.2203

(g) 6.6039 6.7034 3.6788

Figure 8 shows results of a subjective comparison for an
image cropped from image 3 of the database. The rows of Fig-
ure 8 show results of demosaicking of images sampled with the
CFA patterns in Fig. 1. On each row, for a particular CFA pat-
tern, demosaicking results of images sampled with RGB, CMY,
and optimized filter sensitivities appear from left to right re-
spectively. Figure 8 also shows the s-CIELab ΔE error images
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Figure 6. (a)-(g) Optimal spectral sensitivity functions obtained for the

CFA patterns shown in Figs. 1(a)-1(g) respectively. Ordinates represent

normalized transmittances. Bolder lines correspond to the optimal sen-

sitivities obtained at the location of the green filter in the respective CFA

patterns.

corresponding to each reconstructed image. The images ob-
tained by sampling with optimized sensitivity functions show
fewer luminance (most apparent at the edges) and chrominance
(manifest as hue-shifts in the smooth regions) artifacts.

Conclusions
In this paper we have presented optimal color filter spec-

tral sensitivity functions for several periodic CFA patterns. For
the optimization, we use a framework that is based on a uni-
fied spatial-chromatic sampling model and is not dependent on
particular images, but on general image statistics. The results
of simulations reflect the significant role played by color filter

Scene

Image
Demosaicked

Image
Original

Objective measure 

Subjective measure 

x

(mn × 31 ��������	�
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Figure 7. The simulation pipeline. All variables are as described in

preceding sections

transmittances in the quality of demosaicking. Our framework
also allows for a comparison of the CFA patterns considered.
Our results suggest that from the point of view of optimal lin-
ear mininmum MSE reconstruction, the diagonal striped array
in Fig. 1(g) performs best, and the striped CFA (Fig. 1(e)) per-
forms worst. Optimized color filter sensitivities consistently
yield results significantly superior to results obtained from typ-
ical RGB and CMY filters in terms of both the s-CIELab ΔE
metric, and subjectively, as seen in reconstructed images.
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