
Evaluation of Spatial Gamut Mapping Algorithms
Nicolas Bonnier1, Francis Schmitt1, Hans Brettel1 and Stéphane Berche2
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Abstract
We propose an independent evaluation of Spatial Gamut

Mapping Algorithms (SGMAs) by a psychophysical experiment
comparing five gamut mapping algorithms, two point-wise and
three spatially adaptive applied to fifteen images. Results show
that reproduction from SGMAs were rated best, and indicate
that among SGMAs, observers attached more importance to the
preservation of saturation and of global contrast than to the ren-
dering of details. The results of these psychophysical experiments
are then compared to selected Image Quality Metrics (IQMs) to
investigate their possible utilization in the implementation and
evaluation of new GMAs. The comparison demonstrates that
while IQMs do not present a conclusive correlation, they are
still able to extract useful information about the local distortion
caused by the gamut mapping algorithms.

Introduction
The fundamental role of a gamut mapping algorithm (GMA)

is to manage the loss of information caused by the shape defor-
mation and generally the size reduction of the color gamut be-
tween an original image and its reproduction via another technol-
ogy (print, photograph, electronic display). There are an impres-
sive number of proposed GMAs in the literature. Morovic and
Luo have made an exhaustive survey in [1–3]. They classified the
classic point-wise GMAs into two categories: gamut compres-
sion and gamut clipping. The ICC color management is based
on this first generation of non-adaptive GMAs [4]. The next step
has been to investigate the selection of an appropriate GMA de-
pending on the image type, and the adaptation of GMAs directly
to the image gamut instead of the input device gamut [1–3]. To
further improve GMAs, it has been advocated that preservation
of the image details is a very important issue for perceptual qual-
ity [5, 6]. GMAs adaptive to the spatial content of the image,
i.e. Spatial Gamut Mapping Algorithms (SGMAs), have been in-
troduced. These new algorithms try to balance both color accu-
racy and preservation of details. There are a limited number of
publications regarding this recent and important development that
was first introduced by Meyer and Barth in 1989 [7], followed
by Nakauchi et al. [8], Balasubramanian et al. [9], McCann [5],
Morovic and Wang [10], and more recently Kimmel et al. [11]. In
this study, we propose an independent evaluation of three SGMAs
and two point-wise GMAs, by comparing them with each other.
Psychophysical experiments are conducted as recommended by
The Commission Internationale de l’Eclairage (CIE).

Newly implemented GMA are typically evaluated using psy-
chophysical experiment [1–3,6,12]. Conducting a psychophysical
experiment is not very convenient as it involves a panel of ob-
servers, time consuming sessions and an experimental room with

specialized equipment. If instead a robust mathematical model of
the observers’ perception could be used, one would have a much
more flexible evaluation tool to compare GMAs and maybe opti-
mize them. It could even provide local quality indexes allowing
a finer analysis. Many models of the human visual system have
been proposed, and several image quality metrics, based on these
models, can be found in the literature.

Before using these metrics to evaluate the quality of GMAs,
it is necessary to investigate if they present a correlation with
the human perception. Recently, Eriko Bando et al. [13] have
launched the evaluation, by comparing the measure obtained with
three of these metrics, CIELAB∆E∗

ab, S-CIELAB∆E∗
ab [14], and

iCAM [15], with results of paired comparison experiments. They
could find no correlation. In this experiment, we have selected
four metrics that we thought to be appropriate. We propose to
compare them with the results of our psychophysical experiment.

The first part of this paper provides the details of the exper-
iment, followed by an analysis of the results. In the second part,
we compare these results with the measures obtained with a se-
lection of Image Quality Metrics

Evaluation of Spatial Gamut Mapping Algo-
rithms

In this section, we present our evaluation of selected SGMAs
by a psychophysical experiment following the CIE’s guidelines,
with fifteen images and a panel of 22 observers.

CIE’s Guidelines
The CIE and its Technical Committee 8-03 have published

in 2004 a technical report providing guidelines for the evalua-
tion of the cross-device and cross-media color image reproduc-
tion performance of GMAs [16]. GMAs are evaluated using a
psychophysical method and a pool of observers. The guidelines
cover numerous aspects of GMA evaluation including test images,
media, viewing conditions, measurement, gamut boundary calcu-
lation, gamut mapping algorithms, color spaces and experimental
method. Three different psychophysical methods are proposed in
the guidelines: matching, category judgment and pair compari-
son. The latest is by far the most popular and is recommended
by the CIE. We use it in our evaluation. In pair comparison, the
observer is presented with a reference image along with pairs of
candidate gamut-mapped images. The observer is asked to pick
the “closest”or “most accurate” reproduction with respect to the
original image.

Images
A total of fifteen images (Fig. 1) were used in this ex-

periment: PICNIC and SKI (ima5 and ima6) as recommended
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by the CIE, along with eight images from the Kodak Photo CD
Sample and five sRGB images from the ISO 12640-2:2004 stan-
dard [17]. The original images were converted to CIELAB and
gamut mapped using the different GMAs. The output gamut was
the gamut of an OCE TCS-500 printer using OCE Draft paper and
the printer’s Presentation mode. It was measured by a spectropho-
tometer Spectrolino using GretagMacBeth MeasureTool 5.0.4.

Set A: ima1, ima2, ima3, ima4, ima5, ima6 and ima7

Set B: imb1, imb2, imb3, imb4, imb5, imb6, imb7 and imb8
Figure 1. The two image sets used for evaluation

Point-Wise and Spatial GMAs Selected
In our psychophysical experiment, in accordance with the

CIE’s guidelines [16], we evaluate the two point-wise GMAs HP-
MINDE and SGCK and compare them with the following three
Spatial GMAs: XSGM proposed by Bala et al [9], RETGM pro-
posed by McCann and based on Retinex [5] and MSGM4 pro-
posed by Morovic et al. [10].

• HPMINDE, hue-angle preserving minimum ∆E∗
ab clipping

[16]: this algorithm keeps colors belonging to the intersec-
tion of the original and reproduction gamuts unchanged and
only alters original colors that are outside the reproduction
gamut. This is done in the CIELAB space by clipping, these
points being projected onto the nearest point (smallest ∆E∗

ab
color difference) of the reproduction gamut surface belong-
ing to the same hue-angle (ha∗b∗) plane.

• SGCK, chroma-dependent sigmoidal lightness mapping and
cusp knee scaling [16]: this method keeps perceived hue
constant, compress lightness and chroma along lines toward
the point on the lightness axis having the same lightness as
the cusp of the reproduction gamut, using a knee function.

• XSGM: this gamut mapping aims at preserving spatial lumi-
nance variations [9]. Balasubramanian et al. process the im-
age through a standard point-wise clipping GMA, and cal-
culate the difference between the original luminance Y and
the gamut mapped image luminance Y’. The difference is
spatially filtered with a high pass filter, and added back to
the gamut mapped luminance, in order to enhance edges.
The resulting image is again gamut mapped, using another
clipping algorithm that clip colors onto the gamut surface by
projecting them toward a different direction.

• RETGM: the spatial GMA proposed by John McCann [5]
is based on the Retinex model, stressing the importance of
spatial radiance ratios in human vision. The algorithm starts
with the original image and a candidate image resulting from
a classic gamut mapping. It computes local ratios in a multi-

scale decomposition of the original, and then locally modi-
fies the colors of the multi-scale decomposition of the can-
didate image by forcing it to present the same local ratios as
the original.

• MSGM4: the spatial GMA proposed by Morovic and Wang
[10] assumes that when considering spatial accuracy, the
high frequency components, i.e. the details, are more impor-
tant to image quality than low frequency components. After
a spatial frequency-based decomposition of the image, they
manage to compress the gamut of the low pass band and
to reconstruct the image. Then they apply a GMA again to
map the remaining colors lying outside the gamut. By doing
so, they try to preserve as much as possible the high fre-
quency content, possibly sacrificing the dynamic of the low
frequency content.

Source code for HPMINDE and SGCK is provided in ‘C’ on
the CIE Division 8 website. In order to be sure that the SGMAs
used in our experiments were exactly as in the articles describing
them, we asked their authors to process the images. Images from
the sets A and B were gamut-mapped with XSGM by Raja Bala et
al. using a filter size of 10x10 and a gain of 1.0. Images from the
set A, (ima1-7) where gamut-mapped with MSGM4 by Jan Mo-
rovic. RETGM was implemented by using Brian Funt’s Matlab
code [18] and the help of John McCann. McCann algorithm starts
with two images, the original and a gamut mapped candidate. In
our implementation, we map the candidate with HPMINDE, then
we run the Retinex algorithm, then clip the resulting candidate us-
ing HPMINDE to clip any pixel that could have been moved out
of the gamut by Retinex.

Psychophysical Experiment
Twenty-two persons constituted the test panel, seven female

and fifteen male. Paired comparison was used, and the observers
were presented with a reference image along with a pair of candi-
date gamut-mapped images on an Apple Cinema 23 inch display
at a Color Temperature of 6500 Kelvins. The monitor was char-
acterized with a spectrophotometer Minolta CS1000. The back-
ground surrounding the monitor was mid gray, illuminated by a
D65 fluorescent lamp. The observers viewed the monitor from a
distance of approximately 80 cm. We wrote our experiments in
Matlab, using the Psychophysics Toolbox extensions [19].

For each image pair, the observers were asked to indicate
which of the two candidate images was the best reproduction with
respect to the original reference image. It was suggested to make
their decision based on different parts of the image, to evaluate the
fidelity of the reproduction of both colors and details, and look for
possible artifacts. Thus it is the accuracy of reproduction of the
images which was compared, not the pleasantness. There was
no time restriction to answer, and the average response time was
approximately of 17 seconds. The observer was forced to reply
before accessing the next test.

For each observer, the experiment was split in four sessions.
In session one, the seven images of Set A and the five GMAs
were compared for a total of 70 pairs. After a short break of a
few minutes, session two started where the eight images of Set B
and four GMAs, (HPMINDE, SGCK, XSGM and RETGM) were
compared for a total of 48 pairs. After a break of minimum one
hour and usually a few days, the observers proceeded to session
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1:HPMINDE, 2: SGCK. 3:XSGM, 4: RETGM, 5: MSGM4

Figure 2. Z-scores and standard deviations of ima2, ima3, ima4,
ima7, imb2, imb4 and imb6, images for which RETGMA obtains the
best Z-score
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Figure 3. Z-scores and standard deviations of ima1, ima6, imb1,
imb3, imb5, imb8, images for which XSGM obtains the best Z-score

one and two again. Thus each observer had to compare all the
pairs of images twice, but in another random order.

Results
The raw results of the experiment were converted to Z-

scores. The Z-score associated with the ith observation of a ran-
dom variable x is given by zi = (xi−x)

σ , where x is the mean and σ
the standard deviation of all observations.

Results per image
Looking at the results per image, we find that for fourteen of

the fifteen images, SGMAs obtain the best Z-score. The 15 im-
ages can be separated in two main groups based on the preferred
GMA: a group for which RETGMA is ranked best and a group
for which XSGM is ranked best.

RETGMA obtain the best Z-score for 7 images ( ima2, ima3,
ima4, ima7, imb2, imb4 and imb6, see Fig. 2). For these images,
XSGM results present halos, and RETGMA results are more con-
trasted and saturated.

XSGM obtained the best Z-score (see Fig. 3) for 6 images
(ima1, ima6, imb1, imb3, imb5, imb8). For these images, RET-
GMA results show shifts of chroma and clipping artifacts.

MSGM4 obtains the best Z-score for image ima5.
For a single image, imb7, the point-wise GMA HPMINDE

is preferred.

Mean results
Since MSGM4 was evaluated only on Set A, we will discuss

the results on the sets A and B separately. In this sub section, we
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1:HPMINDE, 2: SGCK. 3:XSGM, 4: RETGM, 5: MSGM4

Figure 4. Mean votes for 5 GMAs, 22 observers, 7 images of set A

consider for each GMA the accumulated preference count over
images. Fig. 4 shows for each of the five GMAs the mean for
the twenty-two observers of the accumulated preference count
over the seven images of set A. Fig. 5 shows for each of the
four GMAs (HPMINDE, SGCK, XSGM and RETGM) the mean
for the twenty-two observers of the accumulated preference count
over the fifteen images of both sets A and B. In the following, we
name this mean ‘mean vote’. In both cases, the mean votes for
each session over the twenty-two observers are very consistent,
even if individual results for each observers varied from the first
to the second session. The variability might have been caused by
the presence of very similar pairs and of pairs showing differences
but having the same perceived quality. The observers were forced
to make a choice and this added noise to their results. We believe
that it would be relevant to add a ‘no preference’ option into the
protocol.

We observe also that the standard deviation of the SGMAs is
smaller than that of the point-wise GMAs. This indicates a better
consensus of opinions for the SGMAs.

For set A (See Fig. 4), in the first session, the ranking is:
RETGM, HPMINDE, MSGM4, XSGM, and at last, SGCK. At
the second session, the mean vote of the two point-wise GMAs
slightly decreases and the mean vote of the three SGMAs slightly
increases. The ranking has changed and MSGM4 is now preferred
to HPMINDE.

In Fig. 5, we note that the mean vote over the fifteen images
of sets A and B are similar to the mean vote of the set A alone.
During the experiment, a few observers declared that overall, the
set B was more difficult to evaluate than set A. Indeed the results
confirm these declarations as we observe a larger dispersion of the
results per observers for the set B and a lesser differentiation of
the GMAs. Some of them also complained that images PICNIC
and SKI were difficult to evaluate.

Results by category of observers
Looking at individual results, we discern two categories:

Sixteen observers who preferred on average HPMINDE over
SGCK, and six observers who preferred on average SGCK over
HPMINDE. HPMINDE preserves the saturation but often sup-
presses details in the most saturated parts of the image and in-
troduces artifacts. In the other hand, SGCK preserves details
and doesn’t introduce artifacts, but at the expense of the satura-
tion. Based on these properties, we argue that observers who pre-
ferred HPMINDE over SGCK are more sensitive to the fidelity of
the saturation than the details. These are usually ‘non-experts’
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Figure 5. Mean votes for 4 GMAs, 22 observers, 15 images of sets
A and B
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Figure 6. Mean Z-scores for observers by preference : saturation
versus details preservation

observers. Whereas observers who preferred SGCK over HP-
MINDE are more sensitive to the fidelity of the detail than the
saturation, and are usually ’experts’ observers. Given their differ-
ence of preference on point-wise GMAs, the judgment of the two
groups might be different on SGMAs. In Fig. 6, we see that actu-
ally the two groups have a very similar opinion on SGMAs. These
results indicate once again a stronger consensus on the quality of
SGMAs.

We also looked at a possible difference of judgment between
female and male observers, but found no significant bias.

Discussion
The psychophysical experiment shows a worryingly large

variation of results among observers and images. The CIE recom-
mends a large pool of observers and Morovic et al in [20] insist on
the necessity to use a large number of test images, but the num-
ber of images is limited by the necessity to keep the length of the
test under one hour. Nonetheless, the consistency of our results
from the first session to the second session is a good indicator of
the validity and reliability of the experiment. As mentioned ear-
lier, we believe that the observer should be allowed to answer ‘no
opinion’ to the test.

SGMAs obtain the best ratings on fourteen of fifteen images
and a stronger consensus than point-wise GMAs. This clearly
corroborates that image-dependent SGMAs present a significant
progress in the field. The GMAs tested here have specificities that
might explain the ratings given:

• HPMINDE images are well saturated but in the most satu-
rated parts of some images we note that details have disap-
peared and artifacts have appeared.
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Figure 7. Z-scores over the 22 observers for the 7 images of Set A

• SGCK images are not very saturated but no details have dis-
appeared and no artifats have appeared.

• XSGM produces images saturated with a lot of high fre-
quency local details but sometimes showing halos near
strong edges.

• RETGMA also produces images saturated and well con-
trasted, with natural rendering of local details but sometimes
showing large shifts of chroma.

• MSGM4 does a nice job on preservation of local details but
images suffer of a lack of saturation compared to other SG-
MAs.

Given these observations, the criteria that seem to matter to
the observers, when evaluating SGMAs, are first the saturation
and global contrast, and second the preservation of details and the
lack of artifacts.

Quality Metrics for Color Images
Image quality metrics (IQMs) provide a measure of the dif-

ference between two images. In this section, we measure the
difference between original and gamut-mapped images with four
IQMs, CIELAB∆E∗

ab, S-CIELAB∆E∗
ab [14], iCAM [15], and an

extension to color images of SSIM [21]. We compare these mea-
sures with the results of our psychophysical experiment on SG-
MAs for the set A ( In Fig. 7).

CIELAB ∆E∗
ab

The simplest and most widely used IQM is the
CIELAB∆E∗

ab, a pixel-wise measure corresponding to the
Euclidean distance measured between two color points in
CIELab space. As it was developed to compare patches of
constant colors, it should be of limited accuracy for more
complex images.

∆E∗
ab(x,y) = (∆L∗(x,y)2 +∆a∗(x,y)2 +∆b∗(x,y)2)1/2

IQMLab = Meanx,y(∆Ea∗b∗ (x,y))

Results in Fig. 8 are to be compared with Z-scores in Fig. 7.
We find that the three SGMAs provide the smallest ∆E∗

ab, fol-
lowed by HPMINDE, and then by SGCK which produces the
largest errors. This does not correlate well with the observers’
judgment, except for SGCK which observers disliked due to its
strong de-saturation.

S-CIELAB ∆E∗
ab

S-CIELAB ∆E∗
ab, introduced by Zhang et al. [14] is an evo-

lution of CIELAB ∆E∗
ab and is more elaborated. It includes spatial
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Figure 9. S-CIELAB ∆E∗

ab, mean over the 7 images of Set A

filtering to model the Contrast Sensitivity Function of the Human
Visual System. Results in Fig. 9 resemble CIELAB∆E∗

ab’s re-
sults (in Fig.8). SGCK is again penalized by its de-saturation,
HPMINDE is now the best rated followed by the three SGMAs
which obtain approximately the same scores. Comparing them to
the Z-scores (see Fig. 7), we can find no correlation.

iCAM
iCAM, proposed by Fairchild and Johnson [15] is an image

appearance model, based on a modular framework, that includes
spatial filtering, spatial frequency adaptation, spatial localization,
local contrast detection and a color difference map. iCAM can be
used as a difference metric. Fig. 10 shows results similar to the
above tested metrics.

Structural Similarity, SSIM
Structural Similarity Based Image Quality Assessment, pro-

posed by Wang et al. [21], follows a different approach. The au-
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Figure 10. iCAM difference, mean over the 7 images of Set A
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Figure 11. SSIM-IPT, mean over the 7 images of Set A
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Figure 12. Z-scores, mean over the images for which XSGM ob-
tained the best rating

thors regard the structural information in an image as those at-
tributes that reflect the structure of objects in the scene, indepen-
dent of the average luminance and contrast. Wang et al. propose
a universal image quality index that combines with a geometri-
cal mean the comparison of luminance, contrast and structure :
l(x,y),c(x,y) and s(x,y) respectively.

SSIM(x,y) = [l(x,y)].[c(x,y)].[s(x,y)]

In order to use it in the evaluation of GMAs, we need to adapt it
to color images and we compute separately SSIM on each chan-
nel of the image in color space IPT [22]. Then we combine the
three SSIMchannel with a geometrical mean, following recommen-
dations by the authors:

SSIM− IPT (x,y) = SSIMI(x,y).SSIMP(x,y).SSIMT (x,y)

Results in Fig. 11 show that XSGM obtains the best score from
SSIM-IPT followed by the four other GMAs with a lower but sim-
ilar score. Once again, we do not observe a strong correlation
with the Z-scores over the 7 images; however, we notice similar-
ities with Fig. 3. We decide to focus on the 6 images for which
XSGM obtained the best rating, as shown in Fig. 3: we com-
pare the mean of the Z-scores in Fig. 12 and SSIM-IPT results
in Fig. 13. The results appear here well correlated but must be
considered carefully before generalization and necessitate further
investigations.

Discussion
Three metrics, CIELAB, S-CIELAB and iCAM provide sim-

ilar results, where SGCK obtains bad scores, and the three SG-
MAs good scores at almost the same level. They are able to pre-
dict loss of saturation. For these three metrics, the use of high per-
centiles was also evaluated and gave results similar to the use of

60 Copyright 2006 Society for Imaging Science and Technology



1 2 3 4 5
0.6

0.65

0.7

0.75

GMAs

SS
IM

 IP
T

 

 
Set A
Set B

1:HPMINDE, 2: SGCK. 3:XSGM, 4: RETGM, 5: MSGM4
Figure 13. SSIM-IPT, mean over the images for which XSGM ob-
tained the best rating

the mean. SSIM-IPT’s results are very different: XSGM obtains
the best score and the other GMAs obtain similar results. SSIM-
IPT is able to predict good structural similarity, but apparently not
color accuracy. Given that we tested a beta version of SSIM-IPT,
future improvements might occur. In the current state,there is no
conclusive correlation between the IQMs results and observers’
Z-scores, thus we won’t use them for global assessment of GMAs.
Observers paid special attention to specific features of the images
like memory colors, semantic parts (e.g. a face) or the local aeras
where they noticed that GMAs were likely to fail. By acting so,
they discarded other parts of the images when making their eval-
uations. The metrics do not mimick this high level process, this
might explain their failure. Nevertheless, we believe that IQMs
can be used during the development of new GMAs to measure
accuracy of colors and details, leaving the final evaluation to ob-
servers.

Conclusions
In this study we have proposed an independent evaluation

of spatial gamut mapping algorithms by a psychophysical exper-
iment. We learned that for fourteen out of fifteen images, the
reproduction perceived as best was the result of a SGMA, and
that among SGMAs observers attached more importance to the
fidelity of saturation and global contrast than to the fidelity of
details. The results also indicated a stronger consensus on the
quality of the SGMAs. In the second part, we compared the re-
sults of the experiment with Image Quality Metrics and found that
none presented a strong correlation with observers Z-scores. Nev-
ertheless, the IQMs results suggested that they could be used for
the evaluation of prototype of GMAs, by extracting information
about the local distortions of saturation and spatial detail caused
by gamut mapping algorithms.
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