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Abstract 

Color inverse tables, although seemingly accurate, introduce 
color errors and artifacts near the gamut boundary of a device. 
These artifacts are due to a combination of gamut mapping and 
interpolation: Gamut mapping breaks the correspondence between 
connection and device space vertices, and interpolation 
subsequently fails. An algorithm has been designed for more 
accurate inversions at the gamut boundary. It is based on the 
extrapolation of vertices instead of gamut mapping and 
interpolation. Results on different printers and media types show a 
significant improvement in color accuracy near the gamut 
boundary compared to standard inversion techniques. 

Introduction 
Typically, an image captured with a camera or scanner has 

various color transformations applied to it before it is printed in 
order to produce a pleasing and faithful reproduction of the 
original scene1-3. For example, a camera image is usually 
transformed from the camera sensor space to a connection space 
(usually XYZ or Lab) and then transformed to the printer colorant 
space. These transformations are applied either within the ICC 
framework4 or directly within the device, but either way, they are 
vital for high-quality color reproductions. 

Standard techniques for designing these color transforms5-7, 
however, can introduce significant color errors and artifacts near 
the gamut boundary of a device. This is illustrated in Figure 1. It 
shows an original test image (Panel A) and the same test image 
after two color transformations that were designed to be 
completely invertible to each other (Panel B). Ideally, these images 
should be identical, but as the difference image shows (Panel C), 
colors that were highly saturated are less saturated and contouring 
artifacts have been introduced by the color transforms. 

These color errors and artifacts occur in standard table-based 
(not matrix-based) color transforms due to the combination of 
gamut mapping and interpolation used in building the inverse 
table. Typically, the forward table, which is the mapping from a 
device space to a connection space, is built by characterizing the 
colors that span the device gamut using a color measuring device. 
The inverse table for a device, which is the mapping from a 
connection space to a device space, is usually determined by a 
combination of gamut mapping8-11 colors outside of the device 
gamut and tetrahedral inversion5-7 for colors inside the gamut. It is 
the process used to build these inverse tables that causes the 
desaturation of colors near the gamut and the color artifacts. 

Figure 2 illustrates how gamut mapping and interpolation 
combine in standard inverse tables to cause color desaturation and 
artifacts. Panel A represents a tetrahedron in Lab space 
(connection space). Ideally, the inverse RGB values (device 
values) are determined by inverting each Lab vertex (a, b and c) 
using the forward table and tetrahedral inversion. This, however, 
can be done only for vertices within the device gamut (vertex c). 

 
(A) 

 
(B) 

 
(C) 

Figure 1. Example of color errors and artifacts introduced by 
standard color transformations. Panel A shows the original test 
image. Panel B shows the same test image after two color 
transformations designed to be invertible using standard 
techniques, and Panel C shows the difference between A and B. 

 
(A) 

 
(B)                                              (C) 

Figure 2: Inverse color tables introduce color desaturation and 
artifacts near the gamut boundary. See text for details. 
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Vertices outside the device gamut (a and b) are usually mapped to 
the gamut boundary (a’ and b’) and then inverted. Gamut mapping 
causes a difference between the tetrahedron vertices in Lab space 
and those in RGB space. In Lab space, the vertices are points a, b 
and c, but in RGB space the vertices are a’, b’ and c (see Panel B). 

When these tables are applied in a device or ICC framework, 
interpolation will cause color desaturation and artifacts due to the 
lack of correspondence between vertices in Lab and RGB spaces.  
To illustrate, suppose we had a color on the gamut border in Lab 
space, e.g. point P in Panel A. A color management module 
(CMM) would determine it was in the tetrahedron defined by a, b 
and c in Lab space. Next, it would determine the distances to each 
of the tetrahedron vertices and compute interpolation weights. 
These are illustrated by wa, wb and wc. Next, the CMM would use 
these weights and the RGB vertices to compute the corresponding 
color in device space. The result would cause the point P to move 
into the device gamut due to lack of vertex correspondence (point 
P’ in Panel B), effectively desaturating the color. 

In this paper, we present a solution to color inverse tables that 
cause color desaturation and color artifacts. Specifically, instead of 
gamut mapping any out-of-gamut connection space vertex before 
inversion, we extrapolate these vertices in the device space. This is 
illustrated in Panel C of Figure 2. The algorithm, which we refer to 
as color extrapolation, preserves the correspondence between 
device and connection space vertices and thus does not produce 
color desaturation or color artifacts. Vertex extrapolation methods 
have appeared in the literature that produce more accurate forward 
printer and scanner tables from limited color measurements12, 13.  
Here, we assume an accurate forward table and focus on 
developing an accurate inverse table that fully utilizes the device’s 
gamut by not desaturating colors. 

Color extrapolation 
The first step of the color extrapolation algorithm is to 

classify the connection space vertices in the inverse table into one 
of three categories: in-gamut, border or non-border vertices. In-
gamut vertices are defined to be completely contained within the 
device gamut. Border vertices are defined to be outside the device 
gamut, but they reside very close to the gamut boundary that they 
influence the interpolation of in-gamut colors. These are the 
vertices that must be extrapolated. Finally, non-border vertices are 
also outside the device gamut, but they are far enough from the 
gamut boundary that they have no influence on the interpolation of 
any in-gamut colors. 

Figure 3 shows a two-dimensional example of vertex 
classification. In the figure, black vertices are in-gamut vertices; 
red vertices are border vertices; and green vertices are non-border 
vertices. The triangles interconnecting the vertices illustrate the 
interpolation or tessellation structure of the two-dimensional table. 
Specifically, these triangles in two-dimensions (tetrahedra in three-
dimensions) define the vertices that are used to interpolate colors 
within the triangle. Because border vertices by definition influence 
the interpolation of in-gamut colors, border vertices can be found 
by identifying the out-of-gamut vertices of tetrahedra that cross the 
device gamut. 

After classification of the inverse table vertices as in-gamut, 
border or non-border, the next step of the algorithm is the 
extrapolation of the border vertices. To extrapolate a border 
vertex, we must first select forward table vertices that can train or 

 
Figure 3: Classification of the inverse table connection space 
vertices into in-gamut vertices (black), border vertices (red), and 
non-border vertices (green). Border vertices are outside the 
gamut, but influence the interpolation of in-gamut colors. 

 

 
Figure 4: The training data used for color extrapolation of 
border vertices are selected from the forward table vertices 
(gray). 

 

 
Figure 5: Training data selection flowchart and geometry for 
the extrapolation of the border vertex B. 
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guide the extrapolation algorithm. These forward table vertices, 
which we refer to as training data, enable extrapolation because 
they contain both accurate device and connection space values.  
Figure 4 illustrates example forward table vertices for an a*-b* 
plane in connection space. Their corresponding RGB values are 
not shown. 

A flowchart and illustration of the steps involved in selecting 
the training data from the forward vertices is given in Figure 5.  
Here, we assume B is the border vertex that needs to be 
extrapolated.  In Step 1, the forward table vertices that are in the 
region of influence of B are first selected.  We find these vertices 
by testing if each vertex is contained within any of the tetrahedra 
connected to B.  If it is contained in a tetrahedron, we select the 
vertex.  We refer to these selected vertices as immediate training 
data, and they are shown by the solid gray circles in the Step 1 
panel. 

In Step 2 of the training data selection, we find the neighbor 
training data. These are defined as forward vertices that do not 
directly fall in the tetrahedra connected to B but instead fall in 
tetrahedra that are connected to all in-gamut neighbors of B.  In 
this particular figure, the border vertex, B, has one in-gamut 
vertex, I, directly connected to it. The neighbor training data, 
which are shown by the open gray circles, are all contained within 
the tetrahedra defined by the in-gamut vertex, I. 

At this stage in the selection process, we must check that 
enough forward vertices have been selected to produce a robust 
extrapolation: Too few vertices can lead to extrapolation results 
that are imprecise. Hence, we confirm that the total number of 
immediate and neighbor training data is greater than MIN_TRAIN, 
which we set to twenty.  If the total is greater, the selection process 
is complete and the border vertex can be extrapolated.  Otherwise, 
we continue to Step 3. 

In Step 3, additional forward table vertices must be selected 
to produce precise extrapolations.  To select more data, we find the 
forward vertices that lie within a specific distance, r, from border 
vertex B. This additional training data, which we refer to as distant 
training data, are shown by solid gray circles with black borders in 
the Step 3 panel of Figure 5.  After adding the distant data to the 

training data, we again test against MIN_TRAIN.  If we still do 
not have enough vertices, the distance r is increased until at least 
MIN_TRAIN training points are selected. 

Once enough training data are selected, the border vertex is 
extrapolated. There are many methods to extrapolate border 
vertices, but we found linear extrapolation to be simple and work 
well14. To perform linear extrapolation for a particular border 
vertex, we first place all the training data, immediate, neighbor and 
distant, into two matrices (See Equation 1). One matrix, LT, 
contains the training data values in the connection space, and the 
other matrix, RT, contains the same training data in the device 
space. (The subscript m denotes the total number of training 
samples.) In the equation, we assumed Lab for the connection 
space and RGB for the device space, but any color space can be 
used. Next, using the connection space value of the border vertex, 
lB, and the two matrices, LT and RT, the device space value at the 
border vertex, rB, is extrapolated using Equation 2. (The symbol 
X+ denotes the pseudo-inverse of X.) 
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rB = RT LT
+ lB (2) 

where lB = [LB aB bB 1]T 

 
This completes the process of extrapolating the border vertices in 
the inverse table. 

After extrapolation of the border vertices, we must invert the 
non-border vertices. Traditionally, non-border vertices are simply 
gamut mapped to the device gamut and inverted. This normally is 
an acceptable solution because non-border vertices do not 
influence any in-gamut colors; however, due to the extrapolation 
of the border vertices in the previous step, we must take steps to 
gamut map in a way consistent with the extrapolation to prevent 
artifacts. (While additional steps are needed in the gamut mapping 
process, no restrictions have been placed on the gamut mapping 
algorithm by the color extrapolation algorithm.) 

Figure 6 illustrates all the steps required to gamut map non-
border vertices to a color extrapolated table. First, a convex hull is 
built around the border vertices, not the device gamut. This convex 
hull is illustrated by the red curve. Next, each non-border vertex 
(N in this example) is mapped in a direction defined by the gamut 
mapping algorithm. This direction is denoted as the gamut 
mapping ray. In typical gamut mapping applications, this ray is 
intersected with the device gamut, Ng, and the device value at Ng is 
encoded into the color table at vertex N. In the color extrapolation 
case, however, the Ng point is used to locate the vertices of the 
intersected gamut hull triangle. These vertices, S1 and S2, are used 
to find the closest border vertices (B1 and B2 in this case). Now, 
the exact same extrapolation process is used as described earlier 

 
Figure 6. Geometry illustrating the inversion of non-border 
vertices. See text for details. 

 
 

Figure 7. ICC color workflow architecture for standard  printers. 
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with the exception that the forward table vertices selected as 
training data come from the training data used for vertices B1 and 
B2, and the data is extrapolated to point Nc, the intersection of the 
gamut mapping ray with the convex hull, instead of N. By using 
the same extrapolation process and training data for non-border 
vertices as the border vertices, gamut mapping artifacts due to 
color extrapolation are eliminated. 

Finally, we invert the in-gamut vertices. Nothing special is 
required for these vertices. We used standard tetrahedral 
inversion5-7, but any other alternative inversion techniques can be 
used. 

Color encoding 
A consequence of color extrapolation is that both border and 

non-border vertices will be assigned device values beyond the 
gamut of the device, i.e. less than 0 or greater than 255 for an 8-bit 
device. These beyond gamut values cannot be directly encoded in 
the color tables of most printers and ICC workflows. Color table 
encodings are usually optimized for the device color gamut and 
usually do not allow negative values or values greater than the 
maximum device value. To circumvent this problem, we take 
advantage of the multiple one-dimensional tables that are usually 
available in color workflows both before and after the main three-
dimensional color table. 

Architecturally, it is quite common that printers and ICC 
workflows do not contain only a single three-dimensional table. 
They also contain multiple one-dimensional tables to transform the 
data before and after the full three-dimensional table. Figure 7 
illustrates an example ICC workflow for a printer. Here, the 
workflow contains three one-dimensional tables before the main 
color table and four one-dimensional tables after the main color 
table. These additional tables allow us to encode color extrapolated 
values in ICC workflows and general printer workflows that we 
would otherwise not be able to encode. 

To encode the border and non-border vertices in these 
workflows, the maximum and minimum device values of all the 
vertices are computed for each color channel. The vertices are then 
scaled and offset using the maximum and minimum values to 
ensure that all vertices are within the normal device range and 
encoded in the full three-dimensional table. Then to compensate 
for the applied scale and offset, we use the one-dimensional output 
tables to undo their effect. 

The encoding strategy, however, comes with a cost. We 
sacrifice approximately one-bit in the main table because roughly 
half of the table is used for device colors, while the other half is 
used for extrapolation. Thus, to properly encode a color 
extrapolated table with a bit depth equal to a normal 8-bit color 
table, we need at least a 9-bit encoding for the main color table.  
The output tables, however, can still be encoded with 8-bits so that 
the processed color data is consistent with typical workflows. The 
ICC workflow in Figure 7 supports exactly this architecture. 

Results 
We compared the performance of the extrapolation method 

with the standard tetrahedral inverse method. In Figure 8, the 
gamut boundary of a printer is shown unwrapped as a function of 
hue and lightness. The colors in each plot indicate the magnitude 
of the error, CIE ∆E, between the ideal inversion and that obtained 
by each of the two methods for colors near the gamut surface. For 

 

       

 
Figure 8. Color errors introduced on the gamut boundary by 
different profiling techniques for a 173 inverse table. Each plot 
shows the gamut boundary of a printer unwrapped as a function 
of lightness and hue. 
 

 

 

       

 
Figure 9.  Color errors introduced on the gamut boundary by 
two different profiling techniques for a 333 inverse table. 

4714th Color Imaging Conference Final Program and Proceedings



 

each method, we used the same number of vertices for the inverse 
table, 173. As evident in the plots, extrapolation has significantly 
reduced the color errors near the gamut boundary. 

Figure 9 shows similar plots to those in Figure 8 except 
higher resolution inverse tables were constructed. Specifically, 333 
vertices were used in the inverse table. In the figure, we can see 
the error for all methods decreased, as we would expect, but color 
extrapolation still produced significantly better results. 
Furthermore by comparing Figure 8 and 9, it can be seen that color 
extrapolated, low resolution (173) tables, which use much less 
memory than the high resolution tables, produced results similar to 
non-extrapolated, high-resolution (333) tables.  

Figure 10 compares the results of gamut mapping to 
traditional tables and gamut mapping to color extrapolated tables 
for a particular hue slice.  Specifically, Panel A shows minimum 
∆E gamut mapping to a non-extrapolated color gamut; Panel B 
shows the same gamut mapping on a color extrapolated gamut 
with no compensation for extrapolation; and Panel C shows the 
same gamut mapping to a color extrapolated gamut but with the 
proposed compensation for the color extrapolated gamut. In Figure 
10, we can see that traditional gamut mapping to a color 
extrapolated gamut produces artifacts (Panel B).  These artifacts 
are caused by the differences between gamut mapping algorithm 
and the color extrapolation algorithm.  If, however, the gamut 
mapping algorithm properly takes into account the color 
extrapolated gamut, the artifacts are eliminated (Panel C). 

To gauge the color extrapolation method for different printing 
technologies and media types, Figure 11 shows the average ∆E 
values for in-gamut colors near the gamut surface for the two 
methods and for four technologies and media types: DesignJet130 
Gloss, DesignJet130 Photo Satin, PhotoSmart7960 Gloss and 
ColorLaserJet4700 Gloss.  As evident from the chart, extrapolation 
reduces the color errors near the gamut boundary for all media 
types. 

Finally, Figure 12 shows color extrapolation algorithm 
applied to the image from Figure 1. Panel A shows the original 
image, Panel B shows the inverted image after being applied 
through a color extrapolated table, and Panel C shows the 
difference image. If we compare the color extrapolated difference 
image (Panel C) to the difference image from the non-extrapolated 
color table from Figure 1, which is repeated in Panel D to aid 

 
      (A)                                     (B)                                     (C) 

Figure 10. Image artifacts can be introduced when gamut 
mapping color extrapolated tables if not properly compensated. 
Each plot shows the results of minimum ∆E gamut mapping on 
a hue plane at 91º using a standard tetrahedral table (Panel A), 
a color extrapolated table with no gamut mapping 
compensation (Panel B), and a color extrapolated table with 
gamut mapping compensation (Panel C). 

 

 

 
 
Figure 11. Average ∆E values for in-gamut colors near the 
gamut boundary using different profiling techniques and 
different printers and media. 
 
 
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 12. Image color artifacts are significantly reduced using 
color extrapolation. Panel A shows the test image. Panel B 
shows the same test image with transformations built using 
color extrapolation. Panel C shows the difference between 
images A and B, and Panel D shows the difference image 
from Figure 1 that was produce using a standard tetrahedral 
inverse table. 
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comparison, we see that color extrapolation significantly reduces 
color contouring artifacts and produces a more accurate inversion 
of colors near the gamut boundary. 

Conclusions 
We described a color extrapolation method for improving 

color table inversion near the gamut boundary. We introduced how 
existing gamut mapping algorithms can be used within the 
extrapolation method and how the resulting color tables can be 
encoded within an ICC or printer workflow. Results show the 
improved color tables have lower color errors near the gamut 
boundary; reduce the color artifacts in images near the gamut 
boundary; and utilize the full color capabilities of the device over 
standard tetrahedral inverse techniques.  Finally, the results appear 
to be consistent across printing technologies and media types. 
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