

Improved color table inversion near the gamut boundary
Miheer Bhachech1, Mark Shaw2 and Jeffrey M. DiCarlo1
1Hewlett-Packard Laboratories, Palo Alto, CA, 2Hewlett-Packard Company, Boise, ID

Abstract

Color inverse tables, although seemingly accurate, introduce
color errors and artifacts near the gamut boundary of a device.
These artifacts are due to a combination of gamut mapping and
interpolation: Gamut mapping breaks the correspondence between
connection and device space vertices, and interpolation
subsequently fails. An algorithm has been designed for more
accurate inversions at the gamut boundary. It is based on the
extrapolation of vertices instead of gamut mapping and
interpolation. Results on different printers and media types show a
significant improvement in color accuracy near the gamut
boundary compared to standard inversion techniques.

Introduction
Typically, an image captured with a camera or scanner has

various color transformations applied to it before it is printed in
order to produce a pleasing and faithful reproduction of the
original scene1-3. For example, a camera image is usually
transformed from the camera sensor space to a connection space
(usually XYZ or Lab) and then transformed to the printer colorant
space. These transformations are applied either within the ICC
framework4 or directly within the device, but either way, they are
vital for high-quality color reproductions.

Standard techniques for designing these color transforms5-7,
however, can introduce significant color errors and artifacts near
the gamut boundary of a device. This is illustrated in Figure 1. It
shows an original test image (Panel A) and the same test image
after two color transformations that were designed to be
completely invertible to each other (Panel B). Ideally, these images
should be identical, but as the difference image shows (Panel C),
colors that were highly saturated are less saturated and contouring
artifacts have been introduced by the color transforms.

These color errors and artifacts occur in standard table-based
(not matrix-based) color transforms due to the combination of
gamut mapping and interpolation used in building the inverse
table. Typically, the forward table, which is the mapping from a
device space to a connection space, is built by characterizing the
colors that span the device gamut using a color measuring device.
The inverse table for a device, which is the mapping from a
connection space to a device space, is usually determined by a
combination of gamut mapping8-11 colors outside of the device
gamut and tetrahedral inversion5-7 for colors inside the gamut. It is
the process used to build these inverse tables that causes the
desaturation of colors near the gamut and the color artifacts.

Figure 2 illustrates how gamut mapping and interpolation
combine in standard inverse tables to cause color desaturation and
artifacts. Panel A represents a tetrahedron in Lab space
(connection space). Ideally, the inverse RGB values (device
values) are determined by inverting each Lab vertex (a, b and c)
using the forward table and tetrahedral inversion. This, however,
can be done only for vertices within the device gamut (vertex c).

(A)

(B)

(C)

Figure 1. Example of color errors and artifacts introduced by
standard color transformations. Panel A shows the original test
image. Panel B shows the same test image after two color
transformations designed to be invertible using standard
techniques, and Panel C shows the difference between A and B.

(A)

(B) (C)

Figure 2: Inverse color tables introduce color desaturation and
artifacts near the gamut boundary. See text for details.

44 Copyright 2006 Society for Imaging Science and Technology

3

Vertices outside the device gamut (a and b) are usually mapped to
the gamut boundary (a’ and b’) and then inverted. Gamut mapping
causes a difference between the tetrahedron vertices in Lab space
and those in RGB space. In Lab space, the vertices are points a, b
and c, but in RGB space the vertices are a’, b’ and c (see Panel B).

When these tables are applied in a device or ICC framework,
interpolation will cause color desaturation and artifacts due to the
lack of correspondence between vertices in Lab and RGB spaces.
To illustrate, suppose we had a color on the gamut border in Lab
space, e.g. point P in Panel A. A color management module
(CMM) would determine it was in the tetrahedron defined by a, b
and c in Lab space. Next, it would determine the distances to each
of the tetrahedron vertices and compute interpolation weights.
These are illustrated by wa, wb and wc. Next, the CMM would use
these weights and the RGB vertices to compute the corresponding
color in device space. The result would cause the point P to move
into the device gamut due to lack of vertex correspondence (point
P’ in Panel B), effectively desaturating the color.

In this paper, we present a solution to color inverse tables that
cause color desaturation and color artifacts. Specifically, instead of
gamut mapping any out-of-gamut connection space vertex before
inversion, we extrapolate these vertices in the device space. This is
illustrated in Panel C of Figure 2. The algorithm, which we refer to
as color extrapolation, preserves the correspondence between
device and connection space vertices and thus does not produce
color desaturation or color artifacts. Vertex extrapolation methods
have appeared in the literature that produce more accurate forward
printer and scanner tables from limited color measurements12, 13.
Here, we assume an accurate forward table and focus on
developing an accurate inverse table that fully utilizes the device’s
gamut by not desaturating colors.

Color extrapolation
The first step of the color extrapolation algorithm is to

classify the connection space vertices in the inverse table into one
of three categories: in-gamut, border or non-border vertices. In-
gamut vertices are defined to be completely contained within the
device gamut. Border vertices are defined to be outside the device
gamut, but they reside very close to the gamut boundary that they
influence the interpolation of in-gamut colors. These are the
vertices that must be extrapolated. Finally, non-border vertices are
also outside the device gamut, but they are far enough from the
gamut boundary that they have no influence on the interpolation of
any in-gamut colors.

Figure 3 shows a two-dimensional example of vertex
classification. In the figure, black vertices are in-gamut vertices;
red vertices are border vertices; and green vertices are non-border
vertices. The triangles interconnecting the vertices illustrate the
interpolation or tessellation structure of the two-dimensional table.
Specifically, these triangles in two-dimensions (tetrahedra in three-
dimensions) define the vertices that are used to interpolate colors
within the triangle. Because border vertices by definition influence
the interpolation of in-gamut colors, border vertices can be found
by identifying the out-of-gamut vertices of tetrahedra that cross the
device gamut.

After classification of the inverse table vertices as in-gamut,
border or non-border, the next step of the algorithm is the
extrapolation of the border vertices. To extrapolate a border
vertex, we must first select forward table vertices that can train or

Figure 3: Classification of the inverse table connection space
vertices into in-gamut vertices (black), border vertices (red), and
non-border vertices (green). Border vertices are outside the
gamut, but influence the interpolation of in-gamut colors.

Figure 4: The training data used for color extrapolation of
border vertices are selected from the forward table vertices
(gray).

Figure 5: Training data selection flowchart and geometry for
the extrapolation of the border vertex B.

4514th Color Imaging Conference Final Program and Proceedings

guide the extrapolation algorithm. These forward table vertices,
which we refer to as training data, enable extrapolation because
they contain both accurate device and connection space values.
Figure 4 illustrates example forward table vertices for an a*-b*
plane in connection space. Their corresponding RGB values are
not shown.

A flowchart and illustration of the steps involved in selecting
the training data from the forward vertices is given in Figure 5.
Here, we assume B is the border vertex that needs to be
extrapolated. In Step 1, the forward table vertices that are in the
region of influence of B are first selected. We find these vertices
by testing if each vertex is contained within any of the tetrahedra
connected to B. If it is contained in a tetrahedron, we select the
vertex. We refer to these selected vertices as immediate training
data, and they are shown by the solid gray circles in the Step 1
panel.

In Step 2 of the training data selection, we find the neighbor
training data. These are defined as forward vertices that do not
directly fall in the tetrahedra connected to B but instead fall in
tetrahedra that are connected to all in-gamut neighbors of B. In
this particular figure, the border vertex, B, has one in-gamut
vertex, I, directly connected to it. The neighbor training data,
which are shown by the open gray circles, are all contained within
the tetrahedra defined by the in-gamut vertex, I.

At this stage in the selection process, we must check that
enough forward vertices have been selected to produce a robust
extrapolation: Too few vertices can lead to extrapolation results
that are imprecise. Hence, we confirm that the total number of
immediate and neighbor training data is greater than MIN_TRAIN,
which we set to twenty. If the total is greater, the selection process
is complete and the border vertex can be extrapolated. Otherwise,
we continue to Step 3.

In Step 3, additional forward table vertices must be selected
to produce precise extrapolations. To select more data, we find the
forward vertices that lie within a specific distance, r, from border
vertex B. This additional training data, which we refer to as distant
training data, are shown by solid gray circles with black borders in
the Step 3 panel of Figure 5. After adding the distant data to the

training data, we again test against MIN_TRAIN. If we still do
not have enough vertices, the distance r is increased until at least
MIN_TRAIN training points are selected.

Once enough training data are selected, the border vertex is
extrapolated. There are many methods to extrapolate border
vertices, but we found linear extrapolation to be simple and work
well14. To perform linear extrapolation for a particular border
vertex, we first place all the training data, immediate, neighbor and
distant, into two matrices (See Equation 1). One matrix, LT,
contains the training data values in the connection space, and the
other matrix, RT, contains the same training data in the device
space. (The subscript m denotes the total number of training
samples.) In the equation, we assumed Lab for the connection
space and RGB for the device space, but any color space can be
used. Next, using the connection space value of the border vertex,
lB, and the two matrices, LT and RT, the device space value at the
border vertex, rB, is extrapolated using Equation 2. (The symbol
X+ denotes the pseudo-inverse of X.)

LT =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1111

bbbb

aaaa

LLLL

m321

m321

m321

L

L

L

L

 (1)

RT =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

m321

m321

m321

BBBB

GGGG

RRRR

L

L

L

rB = RT LT
+ lB (2)

where lB = [LB aB bB 1]T

This completes the process of extrapolating the border vertices in
the inverse table.

After extrapolation of the border vertices, we must invert the
non-border vertices. Traditionally, non-border vertices are simply
gamut mapped to the device gamut and inverted. This normally is
an acceptable solution because non-border vertices do not
influence any in-gamut colors; however, due to the extrapolation
of the border vertices in the previous step, we must take steps to
gamut map in a way consistent with the extrapolation to prevent
artifacts. (While additional steps are needed in the gamut mapping
process, no restrictions have been placed on the gamut mapping
algorithm by the color extrapolation algorithm.)

Figure 6 illustrates all the steps required to gamut map non-
border vertices to a color extrapolated table. First, a convex hull is
built around the border vertices, not the device gamut. This convex
hull is illustrated by the red curve. Next, each non-border vertex
(N in this example) is mapped in a direction defined by the gamut
mapping algorithm. This direction is denoted as the gamut
mapping ray. In typical gamut mapping applications, this ray is
intersected with the device gamut, Ng, and the device value at Ng is
encoded into the color table at vertex N. In the color extrapolation
case, however, the Ng point is used to locate the vertices of the
intersected gamut hull triangle. These vertices, S1 and S2, are used
to find the closest border vertices (B1 and B2 in this case). Now,
the exact same extrapolation process is used as described earlier

Figure 6. Geometry illustrating the inversion of non-border
vertices. See text for details.

Figure 7. ICC color workflow architecture for standard printers.

46 Copyright 2006 Society for Imaging Science and Technology

5

with the exception that the forward table vertices selected as
training data come from the training data used for vertices B1 and
B2, and the data is extrapolated to point Nc, the intersection of the
gamut mapping ray with the convex hull, instead of N. By using
the same extrapolation process and training data for non-border
vertices as the border vertices, gamut mapping artifacts due to
color extrapolation are eliminated.

Finally, we invert the in-gamut vertices. Nothing special is
required for these vertices. We used standard tetrahedral
inversion5-7, but any other alternative inversion techniques can be
used.

Color encoding
A consequence of color extrapolation is that both border and

non-border vertices will be assigned device values beyond the
gamut of the device, i.e. less than 0 or greater than 255 for an 8-bit
device. These beyond gamut values cannot be directly encoded in
the color tables of most printers and ICC workflows. Color table
encodings are usually optimized for the device color gamut and
usually do not allow negative values or values greater than the
maximum device value. To circumvent this problem, we take
advantage of the multiple one-dimensional tables that are usually
available in color workflows both before and after the main three-
dimensional color table.

Architecturally, it is quite common that printers and ICC
workflows do not contain only a single three-dimensional table.
They also contain multiple one-dimensional tables to transform the
data before and after the full three-dimensional table. Figure 7
illustrates an example ICC workflow for a printer. Here, the
workflow contains three one-dimensional tables before the main
color table and four one-dimensional tables after the main color
table. These additional tables allow us to encode color extrapolated
values in ICC workflows and general printer workflows that we
would otherwise not be able to encode.

To encode the border and non-border vertices in these
workflows, the maximum and minimum device values of all the
vertices are computed for each color channel. The vertices are then
scaled and offset using the maximum and minimum values to
ensure that all vertices are within the normal device range and
encoded in the full three-dimensional table. Then to compensate
for the applied scale and offset, we use the one-dimensional output
tables to undo their effect.

The encoding strategy, however, comes with a cost. We
sacrifice approximately one-bit in the main table because roughly
half of the table is used for device colors, while the other half is
used for extrapolation. Thus, to properly encode a color
extrapolated table with a bit depth equal to a normal 8-bit color
table, we need at least a 9-bit encoding for the main color table.
The output tables, however, can still be encoded with 8-bits so that
the processed color data is consistent with typical workflows. The
ICC workflow in Figure 7 supports exactly this architecture.

Results
We compared the performance of the extrapolation method

with the standard tetrahedral inverse method. In Figure 8, the
gamut boundary of a printer is shown unwrapped as a function of
hue and lightness. The colors in each plot indicate the magnitude
of the error, CIE ∆E, between the ideal inversion and that obtained
by each of the two methods for colors near the gamut surface. For

Figure 8. Color errors introduced on the gamut boundary by
different profiling techniques for a 173 inverse table. Each plot
shows the gamut boundary of a printer unwrapped as a function
of lightness and hue.

Figure 9. Color errors introduced on the gamut boundary by
two different profiling techniques for a 333 inverse table.

4714th Color Imaging Conference Final Program and Proceedings

each method, we used the same number of vertices for the inverse
table, 173. As evident in the plots, extrapolation has significantly
reduced the color errors near the gamut boundary.

Figure 9 shows similar plots to those in Figure 8 except
higher resolution inverse tables were constructed. Specifically, 333
vertices were used in the inverse table. In the figure, we can see
the error for all methods decreased, as we would expect, but color
extrapolation still produced significantly better results.
Furthermore by comparing Figure 8 and 9, it can be seen that color
extrapolated, low resolution (173) tables, which use much less
memory than the high resolution tables, produced results similar to
non-extrapolated, high-resolution (333) tables.

Figure 10 compares the results of gamut mapping to
traditional tables and gamut mapping to color extrapolated tables
for a particular hue slice. Specifically, Panel A shows minimum
∆E gamut mapping to a non-extrapolated color gamut; Panel B
shows the same gamut mapping on a color extrapolated gamut
with no compensation for extrapolation; and Panel C shows the
same gamut mapping to a color extrapolated gamut but with the
proposed compensation for the color extrapolated gamut. In Figure
10, we can see that traditional gamut mapping to a color
extrapolated gamut produces artifacts (Panel B). These artifacts
are caused by the differences between gamut mapping algorithm
and the color extrapolation algorithm. If, however, the gamut
mapping algorithm properly takes into account the color
extrapolated gamut, the artifacts are eliminated (Panel C).

To gauge the color extrapolation method for different printing
technologies and media types, Figure 11 shows the average ∆E
values for in-gamut colors near the gamut surface for the two
methods and for four technologies and media types: DesignJet130
Gloss, DesignJet130 Photo Satin, PhotoSmart7960 Gloss and
ColorLaserJet4700 Gloss. As evident from the chart, extrapolation
reduces the color errors near the gamut boundary for all media
types.

Finally, Figure 12 shows color extrapolation algorithm
applied to the image from Figure 1. Panel A shows the original
image, Panel B shows the inverted image after being applied
through a color extrapolated table, and Panel C shows the
difference image. If we compare the color extrapolated difference
image (Panel C) to the difference image from the non-extrapolated
color table from Figure 1, which is repeated in Panel D to aid

 (A) (B) (C)

Figure 10. Image artifacts can be introduced when gamut
mapping color extrapolated tables if not properly compensated.
Each plot shows the results of minimum ∆E gamut mapping on
a hue plane at 91º using a standard tetrahedral table (Panel A),
a color extrapolated table with no gamut mapping
compensation (Panel B), and a color extrapolated table with
gamut mapping compensation (Panel C).

Figure 11. Average ∆E values for in-gamut colors near the
gamut boundary using different profiling techniques and
different printers and media.

(A)

(B)

(C)

(D)

Figure 12. Image color artifacts are significantly reduced using
color extrapolation. Panel A shows the test image. Panel B
shows the same test image with transformations built using
color extrapolation. Panel C shows the difference between
images A and B, and Panel D shows the difference image
from Figure 1 that was produce using a standard tetrahedral
inverse table.

48 Copyright 2006 Society for Imaging Science and Technology

7

comparison, we see that color extrapolation significantly reduces
color contouring artifacts and produces a more accurate inversion
of colors near the gamut boundary.

Conclusions
We described a color extrapolation method for improving

color table inversion near the gamut boundary. We introduced how
existing gamut mapping algorithms can be used within the
extrapolation method and how the resulting color tables can be
encoded within an ICC or printer workflow. Results show the
improved color tables have lower color errors near the gamut
boundary; reduce the color artifacts in images near the gamut
boundary; and utilize the full color capabilities of the device over
standard tetrahedral inverse techniques. Finally, the results appear
to be consistent across printing technologies and media types.

References
1. R. S. Berns, "Billmeyer and Saltzman's principles of color

technology," (2000).
2. E. J. Giorgianni and T. E. Madden, Digital Color

Management: Encoding Solutions (Addison-Wesley,
Reading, Massachusetts, 1997).

3. M. Has, "Color management: current approaches, standards
and future perspectives," presented at the Recent Progress in
Color Management and Communications, 1998.

4. ISO 15076-1, "Image technology colour management:
architecture, profile format and data structure," (2005).

5. H. R. Kang, Color technology for electronic imaging devices
(1997).

6. I. E. Bell and W. Cowan, "Characterizing printer gamuts
using tetrahedral interpolation," presented at the 1st
IS&T/SID Color Imaging Conference, Scottsdale, Arizona,
1993.

7. R. Bala, "Inverse problems in color device characterization,"
presented at the SPIE: Computational Imaging, Santa Clara,
California, 2003.

8. J. Morovic and P.-L. Sun, "Non-iterative minimum delta E
gamut clipping," presented at the CIC 9: Color Science and
Engineering Systems, Technologies, Applications, Scottsdale,
Arizona, 2001.

9. G. Marcu, "Gamut mapping: an overview of the problem,"
presented at the PICS 1999: Image Processing, Image
Quality, Image Capture, Systems Conference, Savannah,
Georgia, 1999.

10. H. Zeng, "Gamut mapping in a composite color space,"
presented at the NIP17: International conference on digital
printing technologies, Fort Lauderdale, Florida, 2001.

11. G. J. Braun and M. D. Fairchild, "Color gamut mapping in a
hue-linearized CIELAB color space," presented at the CIC 6:
Color Science, Systems and Applications, Scottsdale,
Arizona, 1998.

12. P. Hung, "Colorimetric calibration for scanners and media,"
presented at the SPIE, 1991.

13. S. A. Rajala, H. J. Trussell, and A. P. Kakodkar, "The use of
extrapolation in computing color look-up tables," presented at
the SPIE, 1994.

14. G. Strang, Introduction to linear algebra, 2nd ed. (Wellesley-
Cambridge Press, Wellesley, MA, 1998).

4914th Color Imaging Conference Final Program and Proceedings

