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Abstract 
The performance of the black ink in ink-jet printing is of great 

importance to both ink-jet manufacturers and ink suppliers. Many 
black ink formulations contain several dyes or pigments and have 
a noticeable hue. The industry requires a suitable method for 
assessing the relative perceptual blackness of black inks. In this 
study, a set of black printed samples have been visually ranked in 
terms of perceptual blackness. Various candidate blackness indices 
have been evaluated and the best has been shown to be able to 
make pair-wise blackness comparisons with greater accuracy than 
the average observer. 

Introduction  
The performance of the black ink in ink-jet printing is of great 

importance to both ink-jet manufacturers and ink suppliers. Many 
black ink formulations contain several dyes or pigments and some 
have a noticeable hue. Current research is concerned with the 
design of new black ink formulations that produce optimal 
performance in a range of different properties. One of the key 
properties, however, is whether the ink formulation produces a 
satisfactory black colour. This can only be assessed visually or by 
measurements that can be correlated with visual assessments. 
Whereas the assessment of whiteness – in terms of both visual 
assessment and instrumental whiteness indices – has been 
extensively researched (because of the importance of good whites 
in certain industries such as textiles and paper) blackness has been 
less well studied. A collaborative project between Leeds University 
and FujiFilm Imaging Colorants Ltd aims to develop an 
instrumental method to assess perceptual blackness. A set of black 
printed samples produced using a variety of ink formulations were 
provided by FujiFilm Imaging Colorants and have been assessed 
visually in terms of perceptual blackness. The spectral reflectance 
factors for the samples were also measured to allow various 
candidate blackness indices to be developed and their performance 
compared with the visual assessments.     

Experimental 
A set of 100 black samples were prepared using an ink-jet 

printer and a variety of ink formulations. The samples were 
cropped to a size of 2.5cm × 2.5cm and mounted onto Munsell N5 
grey card. The spectral reflectance factors were measured for each 
of the black samples at 10nm intervals in the visible spectrum to 
allow the calculation of CIE tristimulus values and various 
candidate blackness metrics. A ranking method was proposed for 
the visual assessment but it was considered inappropriate and 
impractical to request observers to rank 100 samples 
simultaneously. Therefore, the samples were randomly divided 
into 5 subsets each containing 20 samples. Figures 1 and 2 
illustrate the samples in b* vs a* and L* vs C* diagrams 
respectively. Figures 3 shows the volumetric area of the samples in 
CIELAB space.  

The samples of each subset in turn were viewed by observers 
in a viewing cabinet illuminated by a light source approximating 
the D65 illuminant. Twenty five observers were recruited to take 
part in psychophysical experiments and their colour vision was 
assessed using the Farnsworth-Munsell 100-hue test. Two of the 
observers were deemed to have either abnormal colour vision or 
poor colour discrimination and therefore twenty three observers 
were asked to rank the samples in order of their perceptual 
blackness. The rank orders were converted to interval-scale Z 
values using Torgerson’s Categorical Scaling method1,2. One of 
the advantages of analyzing Z scores is that Z scores are interval 
data and their differences are linearly related to differences in the 
corresponding visual assessments. 
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Figure 1: Colour distributions of the 100 black samples (upper row left) and 
the five subsets in CIELAB a*b* space. 

Figure 2: Colour distributions of the 100 black samples (upper row left) and 
the five subsets in CIELAB L*C* space. 
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Blackness metrics 
Various metrics were considered for the prediction of 

perceptual blackness. One of the methods was inspired from 
studies of whiteness prediction3,4. The CIE whiteness metric is 
based on a linear combination of luminance and chromaticity, 
designed so that the components can be weighted to suit various 
hue preferences. 

The first candidate metric (B1) is therefore given as equation 
1,  

 
B1 = a1 + a2Y + a3(x – xn) + a4(y – yn),   (1) 

 
where Y,x,y are the luminance and chromaticities of the 

samples, xn,yn are the chromaticities of the white point (D65 
illuminant) and the coefficients a1-a4 were variables whose values 
were determined by optimization. This metric will have a clear hue 
preference because of the terms in parentheses. An alternative 
metric (B2) was also considered, thus 

 
B2 = a1 + a2Y + a3(x – xn)

2 + a4(y – yn)
2.   (2) 

 
Whereas equation B1 would exhibit a strong hue preference 

the rationale behind equation B2 is that perceptual blackness may 
be correlated with the saturation of the sample (the smaller the 
saturation, the better the blackness) and that the coefficients a2-a4 
would allow various hue directions to be weighted and also allow 
saturation and luminance to be appropriately weighted. Thus, in 
contrast with B1, B2 assumes that for a fixed luminance a perfectly 
neutral sample would be perceived as being blacker than any 
saturated sample. Results (which will be discussed later) showed 
that the performance of B2 was superior to that of B1. The notion 

of applying an analogue (B3) of B2 in the approximately uniform 
CIELAB space was also examined, thus 

 
B3 = a1 + a2L* + a3a*2 + a4b*2,     (3) 

 
where L*, a* and b* are the CIELAB coordinates of the 

samples. Finally, an additional metric (B4) which employed the 
simple weighted sum of tristimulus values was considered.  

 
B4 = a1 + a2X + a3Y + a4Z,     (4) 

 
In all cases, the a1 coefficient was required to provide 

sufficient freedom in the models to fit the data given the fitting 
criterion which is discussed in the next section. 

Data Analysis 
The values of the weighting parameters in equations 1-4 were 

optimized to minimize the root-mean-squared (rms) error between 
the blackness index and the Z values derived from the 
psychophysical experiment. Optimization was performed using 
MATLAB’s fminsearch function which performs a 
multidimensional unconstrained nonlinear minimization (Nelder-
Mead). The Nelder-Mead method is a simplex method for finding 
a local minimum of a function of several variables, in this case ai. 
The starting values for all cases were that ai = 1, i∈{1,2,3,4}. The 
performance of the optimized equations was assessed by the rms 
error score. The performance of the candidate metrics was 
additionally assessed using the wrong-decision criterion5 (WDC). 
In the WDC method the average or consensus rank order for all 
observers is deemed to be correct and can be used to define the 
relative ranking between any pair of samples. Thus if a sample A 
is higher in the average ranking than another sample B then it is 
deemed that sample A is blacker than sample B. An individual 
observer may agree with this ‘decision’ if they rank sample A 
higher than sample B or may disagree with the decision if they 
rank sample A lower than sample B. In the latter case, the observer 
is said to have made a wrong decision. Adjacent pairs in the 
consensus rank order were analyzed and the number of (or per 
cent) wrong decisions made by each observer was calculated. The 
per cent wrong decisions made by each of the metrics were also 
calculated on a similar basis by comparing each metric decision 
with that of the visual consensus. 

Finally, the same group of observers assessed all five sample 
subsets and the candidate blackness indices were optimized for each 
set of visual data.  

Results and Discussion 
The mean per cent wrong decisions made by the observers 

was 35% (individual errors ranged from 22% - 55%). (We note 
that if every pair had been compared with every other the observer 
performance would have been better since by analyzing only those 
pairs formed from samples adjacent in the consensus order we are 
considering only the most difficult comparisons.) Tables 1 and 2 
summarize the training performance obtained from the models for 
each subset of samples. So, for example, the third row of data in 
each table shows the results of the five B3 models, each of which 
was optimized to one of the subsets.  
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Figure 3: CIELAB convex hull (meshed facets) of 100 black samples. 
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Table 1: Summary of training performance (rms) 
model B1 B2 B3 B4 

subset 1 1.1526 0.9489 0.7633 1.0085 
subset 2 0.7777 0.6859 0.6693 0.7704 
subset 3 1.2715 1.5284 1.2258 1.4371 
subset 4 1.9451 1.7898 1.9797 2.1831 
subset 5 0.9334 0.7405 0.6924 0.9364 

average 1.2161 1.1387 1.0661 1.2671 

Table 2: Summary of training performance (%WD) 
model B1 B2 B3 B4 

subset 1 38.9 38.9 27.8 33.3 
subset 2 31.6 31.6 36.8 31.6 
subset 3 31.6 42.1 31.6 36.8 
subset 4 47.4 47.4 52.6 36.8 
subset 5 36.8 42.1 47.4 47.4 

average 37.3 40.4 39.2 37.2 

 
To illustrate the degree to which the fits indicated by Table 1 

are acceptable, Figure 4 illustrates an example of the performance 
of model B3 when it was optimized to fit subset 1. 

 

 
Table 1 shows that the best predictions in rms terms were 

made by the B3 model. However, in terms of the WDC (Table 2) it 
is not so clear which of the models gives the best performance. 
Moreover, to evaluate the models robustly it is necessary to know 
the generalization ability of the models. Table 3 summarizes the 
testing performance. For each class (B1-B4) of model five distinct 
sets of coefficients are generated depending upon which data 
subset the coefficients were optimized on. Each of these sets of 
coefficients is then tested on the other subsets and performance 
averaged to yield a generalization or testing measure. 

Table 3 shows the best performing model is B3 (Eqn 3) which 
makes 37.73% wrong decisions compared with the average visual 
performance of 35% (the best observer makes 22% wrong 
decisions). Final models were generated by averaging the five sets 
of coefficients for each model class and Table 4 shows the WDC 
results when these average models are tested on the various data 
subsets. We note that even for the best model the performance is 
limited by the accuracy to which the visual assessments were 

obtained. It is interesting, but not totally unexpected, that the best 
model is one based on an approximately perceptually uniform 
colour space. Other spaces (including other colour-appearance 
spaces) will be explored in further work. However, overall, the 
performance of the B3 blackness index in this study is encouraging. 

Table 3: Summary of testing performance (%WD) 
mode

l 

subset 1 2 3 4 5 avg overal

l 

1 --- 36.8 47.4 47.4 31.6 40.8 

2 38.9 --- 47.4 52.6 36.8 43.9 

3 44.4 31.6 --- 42.1 42.1 40.1 

4 50.0 42.1 47.4 --- 42.1 45.4 

B1 

5 33.3 31.6 42.1 47.4 --- 38.6 

41.8 

1 --- 42.1 47.4 42.1 36.8 42.1 

2 33.3 --- 47.4 52.6 47.4 45.2 

3 38.9 47.4 --- 42.1 36.8 41.3 

4 38.9 47.4 42.1 --- 47.4 43.9 

B2 

5 33.3 42.1 42.1 47.4 --- 41.2 

42.8 

1 --- 36.8 36.8 36.8 42.1 38.2 

2 33.3 --- 42.1 31.6 42.1 37.3 

3 38.9 31.6 --- 31.6 36.8 34.7 

4 38.9 47.4 47.4 --- 42.1 43.9 

B3 

5 27.8 36.8 42.1 31.6 --- 34.6 

37.7 

1 --- 31.6 31.6 42.1 42.1 36.8 

2 36.8 --- 47.4 36.8 47.4 42.1 

3 33.3 36.8 --- 42.1 36.8 37.3 

4 38.9 42.1 42.1 --- 42.1 41.3 

B4 

5 33.3 26.3 42.1 36.8 --- 34.6 

38.4 

Table4: Summary of testing performance (%WD) using averaged 
coefficients over 5 subsets 
mode

l 

subset 1 subset 2 subset 3 subset 4 subset 5 avg 

B1 38.9 36.8 42.1 47.4 42.1 41.3 

B2 33.3 36.8 47.4 47.4 42.1 41.2 

B3 33.3 36.8 42.1 31.6 47.4 36.0 

B4 38.9 36.8 42.1 31.6 36.8 37.4 

 
B3 = 8.6542 – 0.2583L* - 0.0052a*2 + 0.0045b*2, (5) 

 
The best-performing model based upon Table 4 is of the B3 

form and is shown in Equation 5. When observers were asked to 
rank the samples in order of perceptual blackness they were also 
asked to signify the position in the ranking below which they 
didn’t consider the samples to be black at all. Results are shown 
for one subset in Table 5. Those samples above the dashed line in 
Table 5 are deemed to be black because more than 50% of the 
observers agreed that they were black.  

A summary of all the data is shown in Figure 5 where it can 
be seen (upper-left pane) that there were limitations in the sample 
availability that have limited the impact of this work. For example, 
note that samples close to the point a* = b* = 0 are not classed as 
being black. This is because these samples were too light (see 
Figure 6). However, intuition informs us that an achromatic 
sample of very low Lightness should certainly be seen as black. 
Also, the limit of how chromatic samples may be before they cease 
to appear to be black was clearly not reached in the sets of 
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Figure 4: Performance of model B3 for subset 1 (rms = 0.7633). 
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samples, particularly in the blue direction. The reason for this 
limitation is the particular ink range and substrate that was used. It 
is suggested that further work of this nature is needed with a larger 
and more comprehensive set of samples in order to validate the 
blackness metric that is proposed (Equation 5).  

Table 5: Analysis of one subset showing the per cent observers 
classing each sample as black 
observers’ agreement (%) L* a* b* 

100 10.11 -12.77 -44.13 
100 11.76 -13.77 -39.65 
96 7.86 -12.93 -46.20 
100 13.29 -28.95 -36.78 
100 12.09 -25.42 -38.76 
100 12.29 -16.85 -37.93 
96 8.99 -10.83 -43.35 
96 10.41 -20.23 -40.52 
78 16.70 -37.49 -26.77 
70 6.14 -2.25 -44.82 
74 14.51 -33.81 -29.95 
74 11.82 -20.58 -33.44 

26 12.99 -20.26 -28.87 
17 17.41 -44.67 -20.69 
22 20.67 -53.80 -12.97 
0 17.18 2.56 -16.87 
0 29.84 -72.90 7.09 
4 29.34 -50.68 9.63 
0 36.97 -77.14 36.77 
0 34.13 -33.97 58.84 
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Figure 5: Colour distributions of the 100 black samples (upper row left) and 
the five subsets in CIELAB a*b* space (closed symbols represent those 
samples that more than 50% of observers class as being black). 
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Figure 6: Colour distributions of the 100 black samples (upper row left) and 
the five subsets in CIELAB L*C* space (closed symbols represent those 
samples that more than 50% of observers class as being black). 

1714th Color Imaging Conference Final Program and Proceedings




