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Abstract 
Webster1 has proposed “that adaptation increases the salience of 
novel stimuli by partially discounting the ambient background.” 
This is an excellent, concise, description of the purpose and 
function of chromatic adaptation in image reproduction 
applications. However, Webster was not limiting this proposal to 
just chromatic adaptation, but rather using it as a general 
description for all forms of perceptual adaptation. Demonstrations 
of adaption to other properties of image displays such as motion, 
blur, and spatial frequency led the authors to ponder the question 
of whether observers might adapt to the noise structure in images 
to enhance the novel stimuli — the systematic image content. This 
paper describes psychophysical measurements of noise adaptation 
in color image perception and explores mathematical prediction of 
the effect. The results illustrate the hypothesized pattern-
dependent adaptation and its prediction through adaptation of a 2-
D contrast sensitivity function in an image-appearance-model-
based difference metric. 

Introduction 
Spatial frequency adaptation has been recognized for over 30 years 
and used as evidence for the existence of spatial-frequency- and 
orientation-tuned mechanisms in the human visual system.2 Figure 
1 is a typical demonstration of spatial frequency adaptation. After 
gazing at the bar on the left side of Fig. 1 for 15-30 s., the identical 
patterns on the right side appear to shift in spatial frequency in 
directions opposite the adapting stimuli. 

Webster and coworkers1,3,4 have expanded the exploration of 
spatial frequency adaptation to the study of adaptation to complex 
spatial stimuli such as image blur, face expression, and face 
recognition. Figure 2 recreates one of Webster’s demonstrations of 
blur adaptation. After gazing at the bar between the upper images 
for 15-30s., the bottom two images, which are physically identical 
will appear significantly different. The image on the left will 
appear more blurred after adaptation to a sharp image while the 
image on the right will appear sharper after adaptation to a blurry 
image. This effect can also be seen in the form of simultaneous 
contrast whereby an image will appear sharper if surrounded by 
blurry images. 

Webster’s observations led the authors to hypothesize that the 
human visual system might be capable of adapting to noise content 
in images effectively enhancing the perception of image content 
while minimizing the perception of artifacts introduced by imaging 
systems. Quantitative knowledge of such adaptation effects is 
critical for the development of accurate image quality metrics. 

 
Figure 1. Demonstration of spatial frequency adaptation. 

 
Figure 2. Demonstration of adaptation to image blur. 

A visual demonstration of noise adaptation in images is easily 
created as illustrated in Fig. 3. Adaptation to the images at the top 
will result in the lower-left image appearing noisier than the lower-
right image despite being physically identical. 
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Figure 3. Demonstration of adaptation to image noise. 

Webster and Mollon5 measured contrast adaptation in natural 
images illustrating that the visual system does adapt to the range of 
color and lightness information in a scene. This adaptation could be 
considered similar to an automatic gamut mapping in the visual 
system. While these results suggest the possibility of adapting to 
the noise contrast in an image, they did not explicitly explore noise 
adaptation. Field and Brady6 describe an approach to perception 
based on the content of natural scenes that is easily extensible to 
the concept of adaptation to the noise in an image. Other 
researchers have explored related forms of adaptation, but not 
specifically image noise. Clifford and Weston7 studied adaptation 
to Glass patterns, essentially noise with some correlated structure.  
Anderson and Wilson8 described complex spatial frequency 
adaptation to identity elements in faces. Artal et al.9 have shown 
that neural mechanisms, presumably long-term adaptation, are 
capable of compensating for optical aberrations in observers’ eyes. 
Finally, Durgin et al.10,11 have shown adaptation to natural and 
artificial texture. This, and related, work comes closest to 
measuring noise adaptation however texture adaptation is an 
examination of noise adaptation in the absence of other content. 
The current work aims to examine the perception of the remaining 
image content after noise adaptation. 

Experimental 
The experiment began with the hypothesis that adaptation to 
spatially-structured noise would decrease the sensitivity (raise the 
threshold) of observers to similar noise within an image. 
Furthermore, it was hypothesized that adapting noise of one 
structure (e.g. vertically oriented) would have little, or no, effect 
on the sensitivity to noise of a completely different structure (e.g. 
horizontally oriented). A simple psychophysical experiment was 
designed and implemented to test these hypotheses. 

Observers were presented with images intermittently placed on an 
adapting background. Three types of adapting backgrounds were 
used (see Fig. 4), 2D random, horizontal, and vertical white noise 
with uniform luminance distribution. Additionally, a uniform gray 
adapting background was used. Each adapting background was 
used with contrast levels of 9.4, 18.9, 28.1, and 37.5 percent (Fig. 
4). The adapting backgrounds filled the experimental display, a 
carefully-characterized 23”Apple Cinema HD Display viewed at 1 
meter. The display (1920 × 1200 pixels) subtended 28 × 17 degrees 
of visual field with an addressability of 68 pixels/degree. The 
maximum display luminance was 320 cd/m2 with a white point 
approximating CIE Illuminant D65. The adapting backgrounds 
were achromatic. 

  
Figure 4. Adapting backgrounds ranging from uniform (left) to 37.5% contrast 
(right) for random, horizontal, and vertical white noise. 

Visual sensitivity to each of the three types (random, horizontal, 
vertical) of noise was measured using the method of adjustment. 
These measurements were completed using 5 different images 
(Fig. 5) upon which the noise was added. These images include 4 
pictorial scenes and a uniform gray (equal to the adapting 
background mean luminance, approximately middle gray, and 128 
digital counts on a Macintosh display). The images were each 512 
× 512 pixels, or 7.5 × 7.5 degrees of viewing angle. 

  
Figure 5. Five images used for measurement of sensitivity to added noise 
(random, horizontal, and vertical). 
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The test images were presented together with an original image 
having no added noise. The images were presented for 1 s. 
followed by 4 s. in which only the adapting background was 
present. This cycle repeated while the observers adjusted the noise 
contrast of the right image until the noise was just identifiable. 
Specifically observers were asked to adjust the noise contrast until 
they could just discriminate which of the three types of noise was 
being added to the image. These contrast discrimination thresholds 
(called visible contrast in the plotted results) were obtained for 
each combination of image content, background noise type, 
background noise contrast, and image noise type. There was a total 
of 195 threshold settings for a full experimental session. Observers 
could complete a session in about 2 hours. Once observers set the 
image noise level to the criterion contrast, they pressed a button 
and a new trial began. Trials were completely randomized in all 
experimental variables. Figure 6 shows an example stimulus 
configuration with vertical noise in the adapting background and 
horizontal noise (clearly above the threshold setting) in the test 
image. 

Two observers, MF and GJ, performed the experiment  five times 
each to collect precise data on two observers and assess intra-
observer variability. An additional 10 observers completed the 
experiment once to verify the effect and estimate inter-observer 
variability. All observers had normal, or corrected-to-normal, 
visual acuity and normal color vision. Data for two observers was 
discarded since the available range of noise was not sufficient for 
them in multiple trials. Thus, the reported inter-observer data are 
for  a total of 10 observers. 

 
Figure 6. Example stimulus with the reference image on the left, test image 
with horizontal noise on the right, and adapting background with vertical 
noise. 

Results 
Figure 7 shows the visibility of random noise (observers MF and 
GJ) as a function of adapting background contrast averaged over 
all images for each adapting condition. Example 95% error bars 
are presented on one curve, the magnitude of which would be 
similar for the other data sets. While the error bars appear large 
relative to the adaptation effect, most of the variability is due to 
image dependent changes in the threshold. Only about 1/3 of the 
error is associated with random noise (see Fig. 10). The adaptation 
effect is statistically significant for each viewing situation.  The 
results show that, for both observers, random noise in the adapting 
field elevates the threshold for random noise in the image and the 
effect increases with adapting contrast. Horizontal and vertical 

adapting noise also elevate the thresholds, but to a lesser extent as 
would be expected since those adapting stimuli only depress one 
dimension of the 2D contrast sensitivity function. Observer GJ 
generally shows higher thresholds (possibly a criterion effect in 
the method of adjustment) and larger adaptation effects. 
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Figure 7. Random noise visibility for all adapting conditions. 

Figure 8 shows similar results for the visibility of horizontal and 
vertical image noise. The results are consistent with the thresholds 
for vertical noise elevated when adapting to vertical noise and vice 
versa. There is no effect of horizontal noise adaptation on the 
visibility of vertical noise or of vertical noise adaptation on the 
visibility of horizontal noise (expected since adaptation and 
detection are in different orientation-selective mechanisms). There 
was also little effect of adaption to random noise on the perception 
of vertical or horizontal noise. 

Figure 9 shows analogous results for the average response of 10 
observers. Again example error bars are presented that include 
uncertainty due to inter-observer variation and image dependence. 
Most of the variability, about 2/3, is due to image dependency and 
again the adaptation trends are statistically significant for each 
individual image and are present for all observers.  Examination of 
the three plots in Fig. 9 illustrates that the threshold is most 
elevated for the type of noise present in the adapting background as 
expected. Note how the order of the three curves changes in each 
of the three plots of Fig. 9. 

Figure 10 explores image dependency. For simplicity, the results 
are shown for one observer (GJ) and only for random noise 
visibility with random adapting noise. The general trends are 
similar for other situations. Observer GJ was chosen due to higher 
thresholds and larger adaptation effects than observer MF and to 
use an observer with multiple trials. Example error bars illustrate 
the magnitude of intra-observer variability for the 5 replicate trials. 
Clearly this is much smaller than the overall uncertainty illustrated 
in Fig. 7 and supports the statement that most of the uncertainty 
illustrated in Fig. 7 is due to image dependence. 

V
is

ib
le

 C
o

n
tr

as
t 

13th Color Imaging Conference Final Program and Proceedings 335



 

 

0.01

0.02

0.03

0.04

0.05

0.06

0.00 0.10 0.20 0.30 0.40
Adapting Contrast

MF Random Adapt MF Horizontal Adapt MF Vertical Adapt
GJ Random Adapt GJ Horizontal Adapt GJ Vertical Adapt

 

0.01

0.02

0.03

0.04

0.05

0.06

0.00 0.10 0.20 0.30 0.40

Adapting Contrast

MF Random Adapt MF Horizontal Adapt MF Vertical Adapt
GJ Random Adapt GJ Horizontal Adapt GJ Vertical Adapt

 
Figure 8. Horizontal (upper) and vertical (lower) noise visibility. 

Several observations can be made regarding the results in Fig. 10. 
Regardless of adaptation, noise visibility is a function of image 
content. This can be explained by masking and adaptation to the 
spatial frequency content of the image itself. Johnson and Fairchild 
have previously observed and modeled this effect.17 Random noise 
is most perceptible on the Uniform and Pebble images. The Pebble 
image has a large expanse of nearly uniform sky. The visibility of 
noise is lowest on the Harbour image. Several observers reported 
difficulty detecting the random noise on this image. In the 
foreground of the Harbour image is closely mown grass that has an 
appearance similar to random noise and the background has a lot 
of high-frequency, high-contrast content. All of this serves to mask 
the noise and cause spatial frequency adaptation at all frequencies. 
The other two images had intermediate levels of intrinsic “noise” 
in the image content.  The results in Fig. 10 also illustrate that 
there is a systematic noise-contrast adaptation effect regardless of 
image content. 
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Figure 9. Random (upper), horizontal (middle), and vertical (lower) noise 
visibility for 10 observers. 

V
is

ib
le

 H
o

ri
zo

n
ta

l C
o

n
tr

as
t 

V
is

ib
le

 R
an

d
o

m
 C

o
n

tr
as

t 
V

is
ib

le
 H

o
ri

zo
n

ta
l C

o
n

tr
as

t 

V
is

ib
le

 V
er

ti
ca

l C
o

n
tr

as
t 

V
is

ib
le

 V
er

ti
ca

l C
o

n
tr

as
t 

336 Society for Imaging Science and Technology & Society for Information Display



 

 

Figure 10. Image dependence for random noise visibility on random noise 
adapting backgrounds for observer GJ. 

Modeling 
Concepts of spatial frequency adaptation, masking, and contrast 
sensitivity have long been used in various models of visual function 
and image quality. For example, Watson and Solomon12 present a 
model that incorporates contrast gain control and pattern masking 
in multiple mechanisms tuned to various spatial frequencies and 
orientations. Such a model, perhaps with some tuning and 
calibration, should be capable of predicting the effects observed in 
this research.  

Ferwerda et al.13,14 have created and extended such models for 
practical application in image rendering and reproduction. In 
particular, they proposed a multi-channel model for contrast 
masking that could be used for rendering synthetic images.14 

Ultimately, this work was combined and extended with color 
appearance modeling to create an overall multi-scale observer 
model15 capable of predicting appearance and threshold data. Like 
Watson and Solomon’s model,12 the Pattanaik et al.15 model should 
be capable of predicting the observed results, at least qualitatively. 

However, it is likely that simpler approach, utilizing a 2D contrast 
sensitivity function without explicit channels, might well be 
adequate and more efficient. Fairchild and Johnson have explained 
the motivation for, and formulated, such a model.16 Johnson and 
Fairchild17 further explain their modular image difference metric 
that incorporates spatial-frequency- and orientation-dependent 
contrast adaptation without the need for explicit channels. This 
model, now part of the iCAM image appearance model,16 was 
evaluated for  its capability to predict the noise adaptation 
observed in this work. 

The model was evaluated by having it act as a virtual observer for 
the experiment. The criterion contrast threshold was arbitrarily set 
at a mean ∆Im of 2.0 units (this could be scaled to better match the 
observed magnitudes, but that would not change the predicted 
adaptation trends). For each viewing condition, noise contrast was  

 
Figure 11. Model predictions for random (upper), horizontal (middle), and 
vertical (lower) noise visibility. 

added until the model predicted the criterion threshold. The model 
predicts spatial frequency adaptation by normalizing its 2D CSF by 
the Fourier transform of the spatial adapting stimulus. Normally this 
is the image itself, but for this experiment the adapting image was 
taken to be a weighted average of the adapting background (80%) 
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and the image (20%). These proportions were selected to match the 
time-integrated presentation of the background and image. Figure 
11 shows the predicted noise-contrast thresholds, averaged across 
the five images,  for random, horizontal, and vertical noise and each 
of the three adapting conditions. The predicted trends are similar to 
those observed in the psychophysical results. The contrast values 
differ, but this is simply a matter of calibrating the threshold value 
and degree of adaptation. Figure 12 shows the model image 
dependence for random noise with random adaptation. This does 
not match the observed results, but Fig. 12 does illustrate the image 
dependence of the model due to inherent noise masking and 
adaptation to the images themselves. As expected, the thresholds 
are lowest for the uniform background, but the predicted threshold 
for the Pebble image is surprisingly high. This could be due to using 
mean ∆Im rather than a 95th percentile or similar statistic. While 
the model predicts the general trends of the the observed results, 
this analysis suggests areas for improving the model. It is worth 
noting, that a model without spatial frequency or orientation 
channels is fully capably of predicting effects often thought to 
require such channels. This is due simply to the use of a 2D CSF 
and frequency and orientation specific adaptation. 

Figure 12. Model predictions of image dependence for random noise visibility 
on random noise adapting backgrounds. 

Conclusion 
This research has quantified visual adaptation to image noise 
directly analogous to chromatic adaptation to image white point 
and shown how it can be modeled through gain control of a 2D 
contrast sensitivity function (akin to von Kries normalization of 
chromatic signals). Such adaptation enhances the salience of 
important image features, namely the objects in a scene. This 
phenomenon allows imaging-systems engineers to get away with 
slightly more artifacts in imaging systems (such as halftone 
patterns, random noise, compression artifacts, etc.) since the visual 
system naturally masks signals that are relatively constant in a 
system to facilitate perception of the novel image content. This 
assistance by the human visual system is similar to the blessing of 
metamerism that allows color reproduction to be accomplished 
with just three image channels. 
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