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Abstract
Both surface color and imaging industries strive for minimum 
color inconstancy in the materials they produce, while trying to 
match as many colors  as possible. In this context  the aim of this 
paper is to  look at the relationship between color inconstancy 
properties of  surface colors and their relationship to their chromas 
- specifically with the intention of understanding whether  the two 
are opposed. Following the generation of  spectra that  match a 
sampling  of the gamut of all possible surface colors it is shown 
clearly that the two properties are indeed inter-related and that 
highly chromatic colors cannot  be color constant. Finally, the 
results of this  work are proposed as a  basis for setting color 
inconstancy targets and for having  realistic expectations in terms 
of  this property.

Introduction 
An important aim in many color and imaging industries is to 
produce materials  or images that maintain their appearances 
regardless of the viewing conditions under which they are viewed. 
In the surface color (e.g. textile, plastics) industries the produced 
materials have carefully chosen colors and any change to their 
appearance can  significantly  change their desirability or utility. In 
imaging, the value of a printed or displayed output’s constant 
appearance is equally great as images are typically tuned under one 
set of viewing conditions, but viewed also under a myriad of 
others. The appearance that has been achieved by a creative 
professional under the viewing conditions they used is what needs 
to  be transmitted and changes to it  are not desirable. In fact there is 
existing research that aims to minimize the color inconstancy of a 
color separation1,2 as  well as a hypothesis that it  cannot be kept at 
zero for high–chroma colors postulated by Berns et al.2

Another important aim in developing color imaging systems is to 
allow them to reproduce as wide a range of colors  as possible. In 
other words, it is important to give access  to the largest  possible 
color gamut, which in turn entails using primaries (e.g. inks, 
phosphors, filters) that are as chromatic as possible. Hence, the 
ideal imaging system would be one that, among many other 
features, would allow for the generation of colors  ranging from 
neutral to highly  chromatic and looking the same under a wide 
range of viewing conditions.

Put  more specifically, the aim is to be able to generate highly 
chromatic colors that have a low Color Inconstancy Index (CII). 
The CII of a surface can be expressed, for example using the 
CMCCON024 metric, where a sample’s tristimulus values are 

obtained for a test illuminant  (or light  source), transformed using a 
chromatic adaptation transform to a reference illuminant  and color 
difference is computed between these tristimulus values and the 
ones obtained directly for the sample under the reference 
illuminant (Figure 1). These color difference values express the 
degree to which the sample’s color changes between the pair of test 
and reference illuminants.

Figure 1. Color Inconstancy Index computation workflow

What will be presented in the remainder of this  paper is an analysis 
of surface spectra in terms of the relationship between their 
chromas and color inconstancy indices. The aim of the analysis  is 
to  make explicit the link between these two properties and the 
constraints it  places on what outputs imaging systems can have.

Experimental Framework
To look at the relationship of a sample’s chroma under reference 
conditions and the CII values it could have if viewed under a test 
illuminant, the concept of CII potential will be introduced here.

CII potential will refer to the range of CII values that are obtained 
for a sampling of the spectra that under a reference illuminant have 
a given set of tristimulus values. In other words, for a set of 
tristimulus values (that also correspond to certain lightness, 
chroma and hue angle values) under a reference illuminant, there is 
set of metamers that correspond to it. For a test  illuminant, each of 
the metameric spectra has a specific CII and their minimum and 
maximum values  are then the CII potential of the given XYZ 
values for the pair of reference and test illuminants (Figure 2). 
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What this concept  allows is to  take any possible surface XYZ and 
express the minimum and maximum CIIs possible at its location. 
In other words, it is possible to express the greatest and least 
degree of color inconstancy that can be had at a given location in 
color space. If then CII potential varies with  chroma it will be 
possible to see what impact  the choice of a more chromatic 
primary is likely to  have on the color inconstancy of an imaging 
system that uses it.

Figure 2. CII potential computation.

Figure 3. CII versus chroma computational framework.

To compute CII potential for a given test  illuminant throughout the 
gamut of surface XYZs possible under a given reference 
illuminant, the following stages are required (Figure 3):

1. A means of determining the gamut of all possible surface 
XYZs (i.e. the Object Color Solid – OCS5).

2. A sampling of the OCS.
3. For each XYZ sampled from the OCS, a means of delimiting 

the set of all metameric spectra that have the given XYZ.
4. A sampling of the spectra from each set of the metamer sets.
5. The computation of CII potential for each metamer set (and 

therefore for each sampled XYZ).

Next, details will be provided of the individual stages:

Computing And Sampling The OCS
The set of all possible surface reflectances – the Object Color Solid 
– is  bounded and determined by reflectance spectra that are 
bounded themselves in each wavelength interval: in terms of their 
minima by zero and in terms of their maxima by 100% (or some 

other finite value if fluorescence were to be considered). To 
compute the gamut boundary of the colors corresponding to all 
possible surface spectra, an approach outlined  previously6 will be 
used. In summary the approach is to first compute the gamut of an 
exhaustive sampling of spectra that at  each wavelength interval 
have either zero or 100% reflectance and then to scale the XYZs of 
the resulting gamut boundary points arbitrarily between zero and 
100%. The result of this  computation in CIELAB and for D65 as 
the reference illuminant is shown in Figure 4.

Figure 4. The Object Color Solid in CIELAB
(D65, 2° observer – (half)axes are 100 units long).

Figure 5. Sampling of OCS. 

Given the OCS’  gamut boundary, CIELAB samples will be 
generated by first evenly dividing hue angle and at each hue angle 
then evenly dividing the available chroma range. At each resulting 
hue and chroma combination, the available lightness range is then 
divided so as  to provide samples that  along constant hue and 
chroma lines have the same distances throughout the space (Figure 
5). The reason for arranging the sampling in this  way is to then 
allow for a direct evaluation of CII potential as a function of 
chroma.

Computing And Sampling Metamer Sets
The computation of metamer sets, given an LAB or XYZ vector 
has also been introduced previously.7,6 In summary the approach 
consists of the following: 

Estimating a spectral reflectance R(λ) that corresponds to a given 
set of XYZ values requires inverting the color formation equations 
(i.e. the equations that show how XYZs are computed from 
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reflectance, illuminant SPD and observer color matching 
functions). However, given  that reflectance is  a continuous 
function, while the set of XYZs consists  of three values  only, the 
inverse of color formation is  in  general an underdetermined set of 
linear equations and as  such has potentially an infinite set of 
solutions, which  also implies the phenomenon of metamerism. 

The first step to computing the set of spectral reflectances that 
result in a given XYZ is  to represent them in terms of a linear basis 
obtained by applying characteristic vector analysis8 to measured 
spectra. R(λ) can then be written as a weighted linear sum R(λ) = 
B1(λ)w1 + B2(λ)w2 + … + Bd(λ)wd, where d is  the dimension of the 
linear model and is significantly smaller then the number of 
spectral samples used for R(λ). Hence it is no longer necessary  to 
solve for the n dimensional R(λ) values but only for the d  linear 
coefficients [w1, w2, … wd] that uniquely define the reflectance 
within  the known linear basis  [B1(λ), B2(λ), …, Bd(λ)]. In general, 
solving such under-determined linear systems results in an convex, 
infinite and unbounded set of solutions. However this  set needs to 
be constrained to contain only solutions corresponding to 
meaningful spectral reflectances.

In the context of matte surfaces uniformly illuminated with a 
diffuse light source, spectral reflectances are at all wavelengths 
less than or equal to 100% (no more than all light is reflected) and 
more than or equal to 0% (no less than no light is reflected). This 
restriction, also referred to as physical  realizability, can be 
formulated as a linear inequality  in terms of spectral reflectance: 0 
≤ R(λ) ≤ 1 and bounds the set of solutions to an infinite, closed and 
convex set made up only of physically possible, metameric spectral 
reflectances. Furthermore we constrain the linear model weights to 
lie between the minimum and maximum of the weights 
corresponding to some real, measured surface reflectance spectra. 
Physical realizability coupled with this “box” constraint define 
what we consider meaningful surface reflectances.

Once the metamer set corresponding to a given XYZ is computed, 
it  is sampled in terms of the linear coefficients of the metameric 
blacks. Here the vertices of the convex hull in  the linear coefficient 
space were used as samples from the metamer set. The reason for 
making this  choice is that these vertices represent the spectra that 
have extreme amounts of contribution from the metameric blacks 
used (i.e. both minimal  and maximal per dimension and their 
combinations) while giving spectra that match the desired LAB 
values.

Note also that  while the above procedure will be used for the vast 
majority of OCS samples, the cusps (where the cusp at a given hue 
is  the most chromatic colors there) cannot  be matched using the 
above linear model. Instead spectra obtained during the OCS 
gamut computation will be used for them. Also note that  for OCS 
cusp spectra there is no room for metamerism since they have 
either 100% or 0% reflectance at each wavelength and adding a 
metameric black to them would mean that this would always need 
to  be scaled by zero – to satisfy physical realizability. Hence OCS 
cusp LABs will have CII potentials equal to  the single spectra’s 
CII that can match them. 

Computing CII Potential
Finally, the CIIs of samples from each of the metamer sets 
computed for the OCS samples are computed using the 
CMCCON024 metric and the CIEDE2000 color difference 
equation9 and the CII potential  of the set  (and therefore 
corresponding OCS sample) is determined as the minimum and 
maximum values of the CII distribution. 

Experimental Setup
Table 1, shows details of the experiment  whose results  will be 
presented in the following section.

Table 1. Details of experimental setup.

Parameter Value

Spectral sampling 400 to 700 nm at 10 nm 
intervals

Reference illuminant D65
Test illuminant A
Observer 2º
Luminance of adapting field LA=60 cd/m2

Degree of adaptation complete (D=1)
Surround conditions average (F=1)
OCS samples 749 (10 hues, L and C 

spacing – 10 CIELAB units)
Metamer computation7 12D basis with physical 

realizability and “box” 
constraints

Metamer set samples per set Between 2 and 36410 with a 
median of 363 (i.e. number 
of metamer set vertices in 
linear coefficient space)

CII metric CMCCON024

(using CIEDE2000 color 
difference equations)

Results
Taking the 749 member sampling of the OCS in CIELAB, taking 
the vertices of the metamer sets of each of these samples that 
match it under D65 and computing the CII potential of each set of 
spectra resulted in the data that will be looked at here. In Figure 6 
we see a summary of the CII potentials for the ten hues considered 
here, plotted as a function of CIELAB C*. As can be seen there is 
an important relationship between the CII potential  (i.e. the 
minimum and maximum possible CIIs) of a color and its chroma. 
Namely as  chroma increases  the minimum possible CII increases, 
confirming the hypothesis of Berns et al.3 Looking at maximum 
CII as function of chroma presents a less clear relationship and one 
that could be studied more closely in the future. However, as  it  is 
CII minima that are of more importance here, the above results do 
lead to clear conclusions.
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Figure 6. CII potential as function of CIELAB C*.

To illustrate the above results, Figure 7 shows the most  and least 
color inconstant spectra for the LAB sample that lead to the largest 
CII value in this data set.

To take a closer look at the above results it is also of value to see 
the CII potentials  of an entire hue plane rather than summarized as 
a function of chroma. Figure 8  Therefore shows minimum and 
maximum CIIs at the locations in the h*ab=0 hue plane where 
nonempty metamer sets were computed. As can be seen, the 
minimum values are pretty much a function only of chroma, 
whereas the maximum ones also vary significantly with lightness. 
In particular, maximum CII values are greater around the middle of 
the lightness range and drop off as  the OCS gamut boundary is 
approached.
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Figure 7: Spectra with smallest and largest CIIs matching the same LABs 
under D65.
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Figure 8: CII potential across h*ab=0 hue page. Top: minima and maxima on 
0–15 scale, bottom: higher resolution view of minima.

Conclusions
As has become apparent, the simple answer to the question  posed 
in  the title of this paper: “Can highly chromatic stimuli have a low 
color inconstancy index?” is a clear “No.” The implications 
especially of CII minima increasing as a function of chroma are 
important in that  they set  theoretical lower limits to the CIIs that 
can be aimed for, given a color of certain chroma. For example, it 
is  not possible to  aim for a CII of zero when formulating a colorant 
with  a chroma of C*=70. In that case, the best that can be hoped 
for are values  of around one for purples and around seven for 
cyans, depending on the color’s  hue angle. Looking at CII 
potentials for the 10 hues considered here we can also see, for 
example, that one is more likely to succeed getting  a blue colorant 
with  lower color inconstancy than a green one.

In summary CII potentials, such as those shown in Figure 6, can be 
used both for setting achievable targets  and having realistic 
expectations when formulating new colorants and when evaluating 
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the color inconstancy properties of entire imaging systems, by 
relating CII targets to CII potentials in different parts  of color 
space.
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