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Abstract 
We study the influence of the choice of color space for local tone 
mapping methods. Many local tone mapping methods do not 
perform well when applied independently to the three color 
channels of an RGB image. A common solution is to only  treat the 
luminance channel. However, the question of which color space 
provides the most suitable luminance definition has not been 
addressed. The correlation between luminance and chrominance 
is known to have an influence on the rendered image but the 
relation between a measure of correlation and the appearance of 
the image has not yet been found. We consider four color 
transforms and introduce a measure to evaluate how well they 
decorrelate luminance and chrominance information. We apply 
two local tone mapping algorithms to the luminance channel given 
by the four transforms and visually compare the results. As each 
transform leads to another luminance definition, the resulting 
color images will be different as well. Our results confirm that less 
correlation between luminance and chrominance results in better 
performance of the local tone mapping algorithms. Namely, they 
provide a better increase in local contrast in the luminance 
channel and less hue shifts. However, we show that a perfect 
decorrelation is not always necessary. 

Introduction  
Tone mapping methods are a critical step in the reproduction of 
images. These methods can be classified into two groups: global 
and local tone mapping. Global methods treat the image as a 
whole using a mapping function. One input value is mapped to one 
and only one output value, which depends on the mapping 
function that can be image dependent.1 Local methods treat the 
image spatially using local operators. One input value can be 
mapped to different output values depending on the surrounding 
pixel values. Global methods provide satisfying results for most of 
the captured images. Nevertheless, when the dynamic range of the 
captured scene greatly exceeds the dynamic range of the display, a 
local tone mapping is necessary to render pleasing images. 

Most local tone mapping algorithms are inspired by the Retinex 
theory of color vision.2 Retinex aims to predict the sensation of 
color by making spatial comparisons of color surfaces across the 
image. In its first iteration, Retinex was applied independently to 
all three R,G,B channels. While treating R,G,B independently 
provides good results with global tone mapping methods, it 
becomes problematic for local tone mapping algorithms. Indeed, 
when applied locally such algorithms may create artifacts such as 
local graying out, hue shifts or color fringes, as illustrated in  
Figure 1. The left image of Figure 1 was obtained by applying the 
Multi-scale Retinex algorithm3,4 to all three R,G,B channels 
independently, which tends to gray out the image. The right image 
was processed similarly with the Retinex-based adaptive filter 

algorithm.5,6 Processing R,G,B independently causes a hue shift in 
this case. 

A well-accepted solution to avoid these artifacts is to treat the 
luminance independently from the chrominance.5-10 However, none 
of these methods investigate the influence of the chosen color 
transform on the appearance of the treated image. 

  
Figure 1. Left: multi-scale Retinex applied to all R,G,B channels grays out the 
image. Right: The Retinex-based adaptive filter method applied to all R,G,B 
channels causes a hue shift. 

In this article, we investigate the influence of the color space 
transformation in the case of luminance-based local tone mapping 
methods. In particular, we focus on surround-based Retinex 
methods, which compute new pixel values (Ψnew) by taking the 
difference in the log domain between each pixel value and a 
weighted average of its surround: 

)),(log()),(log(),( yxmaskyxyxnew −Ψ=Ψ , (1) 

where Ψ is the luminance image. It is computed by a color 
transform applied to the input image, which is linear with respect 
to scene radiance. mask is the weighted average of pixel values in 
the surrounding of coordinate (x,y).  

Our aim is to relate a measure of the correlation between 
luminance and chrominance with the color rendition of images 
treated by surround-based Retinex methods. We consider four 
color transforms and define a measure to evaluate how well they 
decorrelate luminance and chrominance. Then, we test two 
Retinex-based local tone mapping algorithms with the four 
different color transforms and relate the results with our measure. 
We show that there is a relation between the visual representation 
of the rendered image and the measure of correlation. Color 
artifacts become visible when luminance and chrominance are 
significantly correlated. 

This article is structured as follows: Section 2 reviews background 
work about color rendition in the case of local tone mapping 
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algorithms. Section 3 presents our measure and the four color 
transforms that we consider. Section 4 presents the two algorithms 
used for the test. Section 5 comments the images obtained with the 
two algorithms and the different color transforms. Conclusion and 
future work are given in section 6. 

Background 
Current methods provide solutions to overcome artifacts created 
by local tone mapping. Rahman et al.3,4 discussed the graying out 
effect of surround-based Retinex algorithms and added a color 
restoration step to their Multi-Scale Retinex (MSR) algorithm. The 
Multi-Scale Retinex with Color Restoration (MSRCR) was studied 
by Funt and Barnard.7,11 They concluded that the color restoration 
step compensates for the graying out effect by increasing the 
saturation, but has an unpredictable effect on the hue of the image. 
This graying out effect is due to the regional violations of the gray-
world assumption intrinsic to the Retinex theory. Funt and Barnard 
thus suggest applying MSR to the luminance channel only. The 
treated luminance is then combined with the chrominance to 
obtain the final color image. They define the luminance as the 
average of the three color channels R,G,B. With this definition of 
luminance, some chromatic information remains in the luminance 
and vice-versa, which may lead to artifacts. 

In a recent article,6 we presented a Retinex-based method that 
applies an adaptive filter to the luminance channel. The luminance 
is defined by a principal component analysis (PCA) computed 
over an RGB input image. The use of a PCA is motivated by the 
fact that it has properties that intrinsically lead to an opponent 
representation of colors, which makes it biologically plausible.12,13 
The first component is all positive and has the largest share of 
signal energy. It represents the achromatic channel, carrying 
luminance information. The second and third components are 
opponent and represent the chrominance information. Moreover, 
PCA provides an optimal decorrelation of the three color channels.  

Fairchild and Johnson8 developed a color appearance model 
(iCAM), which applies a local treatment to the luminance channel. 
The first stage of iCAM accounts for chromatic adaptation. Then, 
the image is transformed into an opponent representation. Only the 
luminance channel is processed to avoid the desaturation caused 
by the local treatment.  

Sobol10 also applies his Retinex-based algorithm to the luminance 
channel only. Unlike previously mentioned methods that define 
the luminance as weighted sum of R,G,B color channels, his 
luminance definition is given by the maximum between these three 
channels. The final color image is obtained by adding the new 
luminance to the log-encoded RGB image. 

Thus, many local tone mapping methods first transform the input 
image into a luminance/chrominance representation and treat the 
luminance only:  

{ } { }),,(,, 21 BGRfCC cs=Ψ , (2) 

where Ψ, C
1
 and C

2
 are a function of R,G,B and f

cs
 is defined by 

the color transform considered.  

In most cases, the luminance is defined by a weighted average of 
R,G,B color channels,3-5,7-9,11 except for Sobol’s method.10 Then, the 
final RGB image is obtained either by converting the 
luminance/chrominance image back to RGB (3) or by using a 
scaling technique where the ratio of the initial luminance and the 
treated luminance multiplies the three color channel (4). The 
particular case of Sobol’s method adds the treated luminance to the 
log-encoded RGB image (5).  

{ } { }),,(,, 21
1 CCfBGR newcsnew Ψ= −

 (3) 

{ } { }BGRBGR new
new ,,,, ⋅

Ψ
Ψ=  (4) 

{ } { })log(),log(),log(,, BGRBGR newnew +Ψ=  (5) 

Here “·” and “+” are component per component operations. 

In this article, we study the effect of different luminance 
definitions on the rendered image for the case of MSR3,4 and 
Retinex-based adaptive filtering.5,6 Our aim is to investigate the 
relationship between the decorrelation of luminance and 
chrominance information and the correct rendition of the color 
after a local tone mapping was applied to the luminance. 

A Measure of Correlation 
The four color transforms that we chose for our tests are described 
in Table 1. Each of them transforms the linear RGB input image in 
a luminance/chrominance encoding (2).  

The first one, “f
RGB

” transform, simply defines the green channel G 
as being the luminance and the red and blue channels R,B as being 
the chrominance. With this transform, the luminance is strongly 
correlated with the chrominance. The second transform is “f

YUV
”, 

which is a linear transform widely used for video processing.14 The 
third one, “f

Lab
”, is used for perceptual experiment and is not a 

linear transformation. The last one “f
PCA

” is an image-dependent, 
linear transform based on a PCA applied to the input image, which 
guarantees perfect decorrelation between components. The 
luminance is defined by the first principal component. 

Table 1: The Four Color Transforms Tested 
 
 

fcs Luminance Chrominance Transform 

RGB Linear G R,B fRGB 
YUV Linear Y u,v fYUV 
Lab Non-

Linear 
L a,b fLab 

PCA Linear L: 1st 
principal 
component 

C1: 2
nd principal 

component 
C2: 3

rd principal 
component 

fpca : Defined by 
the 
eigenvectors of 
the input’s 
covariance 
matrix 

 

13th Color Imaging Conference Final Program and Proceedings 277



 

 

We estimate a simple correlation measure MC obtained by 
computing the mean of the correlation coefficients between the 
luminance and the chrominance channels over a set of 
representative images S:  

∑
∈

=
I

Si
iMC

I
MC

1
, (6) 

where I is number of representative images in the set S. 

The correlation measure for one image i is given by the average 
correlation between luminance and chrominance channels:  

2

),(),( 2,1, iiii
i

CLcorrCLcorr
MC

+
= , (7) 

where the correlation between luminance and chrominance is 
defined by the normalized covariance (8),(9). 
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CL
CLcorr =  (9) 

In (8) and (9), C
i,x
 represents one of the two color channel C

i,1 or 
C

i,2. N is the number of pixels in the image i. 

Table 2 shows the measure of correlation of the four considered 
color transforms. Uncorrelated data results in a correlation 
coefficient of 0; equivalent data sets have a correlation coefficient 
of 1. A graphical representation is given in Figure 2. It shows how 
well the color transforms decorrelate the luminance from the 
chrominance. Our aim is to see how this measure is related to 
color rendering. In particular, we want to test if f

PCA
, which is 

image dependent and guarantees perfect decorrelation between 
components, leads to the best reproduction. 

 
Figure 2. MC for fRGB, fPCA, fLab, fYUV. 

Table 2: Measure of Correlation 
MCRGB 0.98 
MCYUV 0.28 
MCLab 0.25 
MCPCA 0 

 
Two Luminance-Based Tone Mapping 
Methods 
Two surround-based local tone mapping algorithms are used for 
our tests. We implemented the multi-scale Retinex (MSR) of 
Rahman et al.3,4 for that purpose and used our Retinex-based 
adaptive filter method.5,6  

Multi-scale Retinex:3,4 
MSR is a combination of three single-scale Retinex. It computes 
new pixel values by taking the difference in the log-domain 
between each pixel and a weighted average of its surround for 
three different surround sizes. The weighted average is obtained by 
convolving the input image with a two-dimensional filter, whose 
entries are given by a Gaussian function. The spatial constant of 
the Gaussian function varies according to the surround size. In 
their article, Rahman et al. apply MSR separately to R,G,B color 
channels and add a color restoration factor. We do not use the 
color restoration factor but apply MSR only to the luminance 
channel as suggested by Refs. [7] and [11]. 

Retinex-Based Adaptive Filter:5,6  
This algorithm is based on surround-based Retinex. It also 
computes the new image by taking the ratio between each pixel 
and a weighted average of its surround but differs in three ways:  

1. As local processing tends to make pure white and pure black 
low contrast areas turn gray, the Retinex-based adaptive filter adds 
a β(x,y) factor that weighs the mask in order to preserve white and 
black. The value of β(x,y) depends on the input image value at 
position (x,y). 

)),(log(),()),(log(),( yxmaskyxyxyxnew β−Ψ=Ψ  (10) 

2. Instead of using a circular surround, the shape and the weights 
of the surround are adapted for each pixel depending on the 
position of high contrast edges in the image. In this way, halo 
artifacts common to other surround-based methods are prevented. 

3. The Retinex-based adaptive filter is applied to the luminance 
channel only. Before doing the inverse color transformation to 
obtain the RGB image, the chrominance channels are multiplied 
by a factor to compensate for the decrease in saturation induced by 
the increase in image brightness. 

We apply theses two local tone mapping algorithms to a set of test 
images. Each input image is first converted from RGB to a 
luminance/chrominance opponent representation using one of the 
color transforms of Table 1. Then, one of the local tone mapping 
methods is applied to the luminance channel. Finally, the 
chrominance channels and the new luminance are transformed 
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back into RGB encoding. We visually compare the results and 
comment them in the next Section. 

Discussion and Results 
Figure 3 shows the results obtained with MSR and the four color 
transformations defined in Table 1. It shows that different 
transforms, thus different luminance definitions, result in different 
output images.* The images obtained using f

RGB
 and MSR 

algorithm clearly shows a pink color shift in the center of the 
image. This is due to the fact the G channel is strongly correlated 
with the R and B channels. Then, there is little visible difference 
between the images obtained with f

Lab
, f

YUV
 and f

PCA
. The graying out 

of low contrast areas such as the sky is due to the local averaging 
induced by Retinex surround-based methods. As mentioned before 
the Retinex-based adaptive filter method prevents graying out by 

introducing a factor that weighs the mask depending on the input 
image values. This, in addition to the saturation compensation 
factor, results in visually more appealing images. 

Figure 4 shows the same image treated by our Retinex-based 
adaptive filter method and the different color transforms. The 
image computed with f

RGB
 also presents a color shift in the center of 

the image. We can observe as well that f
YUV

 and f
PCA

 lead to images 
with a better increase in local contrast than f

Lab
. In other words, the 

detail of the central part of the image is more visible. Moreover, 
the sky is slightly more saturated with f

PCA
 and f

YUV
 than with f

Lab
. 

These differences may come from the fact that the f
Lab

 transform is 
non-linear with respect to the scene radiance. We see no difference 
between the image computed using f

YUV
 and the image computed 

using f
PCA

. 

 

  
fRGB fLab 

  
fYUV fPCA 

Figure 3. Results obtained with MSR. 
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fRGB fLab 

fYUV fPCA 

Figure 4. Results obtained with the adaptive filter method. 

 
Nevertheless, if we compare the results of f

PCA
 and f

YUV
 on another 

image (Figure 5), color differences appear. In Figure 5, the top 
image (f

YUV
) appears greener than the bottom image (f

PCA
). This hue 

shift becomes obvious if we look at the a, b chromaticity plane of 
these two images (Figure 6). The image treated using f

YUV
 is plotted 

in cyan, while the image treated using f
PCA

 is plotted in magenta. 
The cyan cloud is shifted to the left of the magenta cloud, i.e. the 
image treated using f

YUV
 tends to appear greener than the image 

treated using f
PCA

. This causes the face of the person to look 
slightly green on the f

YUV
 image. 

Figure 3, 4 and 5 show that the choice of the luminance definition 
on which a local tone mapping algorithm is applied plays a role for 
the image appearance. However, a small correlation between 
luminance and chrominance does not affect significantly the final 
result. f

RGB
 had the worst decorrelation measure and the images 

obtained using this transform clearly present color shift artifacts. 
f

YUV
 and f

Lab
 had good decorrelation measure but not as good as f

PCA
 

that ensures perfect decorrelation between components. The fact 
that the luminance of Lab-encoded image is non-linear induces 
some differences with the f

YUV
 and f

PCA
 images. However, the 

images computed using f
YUV

 and f
PCA  

are very similar, which makes 
it difficult to judge which transforms leads to the best resulting 
image. 

It is important to note that f
PCA

 works well for natural images, 
which contain a reasonable diversity of colors. However, particular 
cases such as a singular color image would lead to an ill-
conditioned transformation matrix and thus to the failure of the 
PCA algorithm. This does not happen when treating natural 
images even in the presence of color cast but is more likely to 
happen with synthetic images. 
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fYUV 

 
fPCA 

Figure 5. Results obtained with the Retinex-based adaptive filter method. The 
top image (fYUV) appears greener than the bottom image (fPCA). 

Conclusion 
The goal of our study was to investigate the role of the luminance 
definition on the final image appearance in the case of luminance-
based local tone mapping algorithms. For that purpose, we tested 
two algorithms and four color transforms (f

RGB
, f

YUV
, f

Lab
 and f

PCA
). A 

measure of correlation was established for these four transforms. 
The f

RGB 
transform had highly correlated components. f

YUV
, f

Lab 
were 

slightly correlated and f
PCA

 was designed to ensure perfect 
decorrelation for all images. Our observations were that there were 
little visible differences between the images treated using f

YUV
, f

Lab
 

and f
PCA

. Local color shifts started to appear when using a 
transform where luminance and chrominance were highly 
correlated such as f

RGB
. That suggests that there is a relationship 

between the amount of correlation between luminance and 
chrominance, and the quality of the image appearance. However, a 
perfect decorrelation does not seem to be necessary to obtain 
visually pleasing images. 

 
Figure 6. Plot of the a,b chromaticities of the two images of Figure 5. The 
image treated using fYUV is plotted in cyan while the image treated using fPCA 
is plotted in magenta. 
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