

Fast Algorithm for Completion of Digital Photographs with
Natural Scenes
K.K. Biswas, Siddharth Borikar and Sumanta Pattanaik, School of Computer Science, Univ. of Central Florida, Orlando, Florida, USA

Abstract
We present a fast method for completion of digital photographs of
natural scenery, where the removal of an unwanted object creates
a hole in the image. Because of the strong horizontal orientation
in natural scenes, it is intuitive to synthesize the missing part by
image fragments drawn from horizontally located areas, without
the need to search whole of the image area to find the appropriate
texture. We are thus able to select the texture that naturally blends
into the rest of the scene horizontally. We also propose a
modification to deal with sloping horizons, such as mountain
areas, and show how the texture filling areas can be suitably
chosen. We demonstrate the method by completion of a variety of
scenes.

Introduction
The filling of missing information is a very important topic in
image processing, with applications including image coding and
wireless image transmission(e.g. recovering lost blocks), special
effects (e.g. removal of objects), and image restoration (e.g.
scratch removal).3 The removal of portions of an image is an
important tool in photo-editing and film post-production.

Image completion is an area related to texture synthesis. Inpainting
techniques were naturally extended from paintings to images and
films.2 Image inpainting and image completion are not the same;
they differ in the area that is to be filled or completed. In image
completion regions are large and consist of textures, large scale
structures and smooth areas. In image completion the region that is
to be removed is specified by the user. It is generally some
foreground element that needs to be taken off the scene. After
removing the foreground element, the area is to be filled so that
the image looks naturally complete.5

Various methods like clone brush strokes and compositing
processes are used to complete the image, user skill is required in
such methods. Texture synthesis can also be used to complete
regions where the texture is stationary or structured.
Reconstructing methods can be used to fill in large-scale missing
regions by interpolation. Inpainting is suitable for relatively small,
smooth and non-textured regions. In Computer Vision number of
approaches related to image completion are available, dealing with
edge and contour completion.

Our approach focuses on image based completion, with no
knowledge of the underlying scene. In images with natural
scenery, there is a strong horizontal orientation of texture/color
distribution. We have tried to exploit this fact in our proposed
algorithm to fill in missing regions. We follow the principle of
figural familiarity and use the image as our training set and

complete the image based on examples from horizontal
neighborhood.

The assumption of horizontal orientation in natural images can be
verified by taking the Fourier transform of such images. Fourier
transforms of such images exhibit a distinct vertical line at the
center. This indicates that the color/texture in the image is
horizontally oriented.

The organization of the paper is as follows. In section 2, we briefly
discuss some of the related work. In section 3 we present our
algorithm on image completion. In section 4, we make a
comparison of computational requirements of our algorithm with
that of Ref. [5].

Related Work
Image inpainting is a method for repairing damaged pictures or
removing unnecessary elements from pictures. Inpainting has its
applications in restoration of damaged paintings and photographs
and also could be applied in image filling problems. The objective
of inpainting is to reconstitute the missing or damaged portions of
the work, in order to make it more legible and to restore its unity.
An algorithm related to the basic techniques used by professional
restorators in image restoration is used in Ref. [2]. The basic idea
is to smoothly propagate information from the surrounding areas in
the isophotes (lines of equal gray values) direction. The user has to
provide the region to be inpainted.

Brooks et al.4 have presented a mechanism to edit textures. It
allows the user to perform replicated texture editing operations. A
single editing operation at a given location would cause global
changes, affecting all similar areas of the texture. The algorithm
changes (edits or warps) the texture as defined by the user. The
pixel values are changed as per the user input and the result is an
automatically generated texture with limited user input.

Freeman et al.8 have discussed a method to increase the resolution
of images. Constructing polygon models for complex, real-world
objects is difficult. Image based rendering (IBR), a complementary
approach for representing and rendering objects, uses cameras to
obtain rich models directly from real-world data. When the image
is enlarged, since the original information captured is less, one
gets a blurry result.

Heeger et al.9 have described a method for synthesizing images
that match the texture appearance of a given digitized sample. The
focus of their paper is on the synthesis of stochastic textures. Some
theories of texture discrimination are based on the fact that two
textures are often difficult to discriminate when they produce a

270 Society for Imaging Science and Technology & Society for Information Display

similar distribution of responses for set of (orientation and spatial-
frequency selective) linear filters.

The work done by Igehy et al.10 is another approach for image
filling which uses the texture synthesis algorithm described in the
paper by Heeger et al.9 In the algorithm the noise is converted to
an image using the original image and a synthetic texture which is
derived from the target. The algorithm is completely based on Ref.
[9], except that with every iteration of the algorithm, the original is
composited back into the noise image according to the mask using
a multi-resolution compositing technique that avoids blurring and
aliasing.

Efros et al.6 have modeled the texture as a Markov Random Field
(MRF). The probability distribution of brightness values for a
pixel given the brightness values of its spatial neighborhood is
independent of the rest of the image. Based on this principle the
neighborhood of the pixel is considered.

The major challenges in texture synthesis as posed in the paper by
Wei et al.12 are-1) modeling- how to estimate the stochastic
process from a given finite texture sample and 2) sampling- how to
develop an efficient sampling procedure to produce new textures
from a given model. They claim that both the modeling and
sampling parts are essential for good texture synthesis because the
plausibility of generated textures will depend primarily on the
accuracy of the modeling, while the efficiency of the sampling
procedure will directly determine the computational cost of texture
generation.

The algorithm described in Ref. [1] is similar to the one by Wei et
al. in which the searching operation is used. The algorithm by Wei
et al. uses the L2 norm to calculate the distances between two
neighborhoods. Since the L2 norm is averaging of neighborhood
pixels the edges, corners and other high level features in the image
are not captured. This could lead to smoothed out edges and the
human visual system being very sensitive to such details, these
anomalies are easily recognized.

Bertalmio et al.3 have tackled the problem of image filling. Since
most image areas are not pure texture or pure structure, this
approach provides just a first attempt in the direction of
simultaneous texture and structure filling-in. The basic idea of the
algorithm in Ref. [3] is that the original image is first decomposed
into two images, one capturing the basic image structure and the
other capturing the texture (and random noise). The first image is
inpainted following Ref. [2], while the second one is filled-in with
a texture synthesis algorithm.6 The two reconstructed images are
then added back together to obtain the reconstruction of the
original data.

The work done by Drori et al.5 comes closest to the work reported
in this paper. In that paper5 the missing regions are iteratively
filled using the known image as the training set. The goal is to
complete the unknown regions in an image based on the known
regions, given the inverse matte and the source image. Self-
similarity in the input image is required for this algorithm to give
correct results. The algorithm requires extensive computation for

every fragment at every scale. It takes a lot of time to complete a
small portion of the image. In the next section, we present our
approach to this problem which attempts to solve it in much less
time.

The Proposed Image Completion Method
Our image completion follows the principle of figural familiarity.
The missing areas are filled with familiar details taken by example
from rest of the image as in Ref. [5]. However, as observed in
most images of natural scenes there is a strong horizontal
orientation of texture/color distribution. This prompts us to limit
the search only along horizontal direction and thereby reduce the
search complexity extensively.

To capture properly the intended texture area, we propose to
complete the unknown part with blocks of pixels instead of
individual pixels. This will help to capture the appropriate texture
content. We place a grid over the complete image with each cell of
size m x m. The search is now made to find the appropriate block
from the source image to fill up the m x m block of the matte. The
algorithm is detailed below.

Grid Algorithm
For the given matte (the hole created by removing the foreground
object), Drori et al. conduct the search for the appropriate pixel by
looking for a match between the fragment surrounding the current
pixel in the matte and fragments in rest of the remaining source
image. However, to have a seamless joint across the border of the
matte, it would be more appropriate to locate the pixel pa most
similar to the pixel lying on the left boundary of the matte, and
replace the pixel on its right by the pixel on the right of pa. In our
method, we consider m x m sized fragments (block). We propose
to consider m x m blocks for searching and replacement. For this
purpose we put a grid on the whole image with grid size of m x m
(Figure 1). To maintain figural similarity, we start filling up the
left portion of the matte with image fragments from the left side of
the matte, and the right portion of the matte with fragments from
portion of the image lying to right of the matte.

Completion from Left Side:
On each horizontal row we pick up ‘Bb’, the m x m block lying
closest to the left of the matte boundary. We now search the
source image for ‘Bs’, a block whose characteristics match closely
with that of ‘Bb’, the measure of closeness being the L2 norm.
Then we simply replace ‘Bbr’, the block on the immediate right of
‘Bb’, by Bsr, the block to the immediate right of ‘Bs’. The
underlying idea is that it will capture the figural familiarity
between ‘Bs’ and ‘Bsr’ and ensure that it is reflected across the
blocks ‘Bb’ and ‘Bbr’ as well. When the next horizontal row of
blocks is considered, we again find the block nearest to the
boundary and find the closest match as before. The replacement
block now could be the one right of this block or the block located
immediately below ‘Bsr’. It is observed that in many cases they
turn out to be the same blocks. If it is not so we can make a
selection based on how closely it fits in with other replaced blocks
in the matte and the blocks near the boundary of the matte and
replace it with the block that matches the best between the two
blocks.

13th Color Imaging Conference Final Program and Proceedings 271

Bs
Bsr

Bb

Bbr

Bbl Bb

Bsl Bs

Figure 1. The m x m sized grid and the Block replacement policy.

(a) (b) (c)

Figure 2. Two Colored Matte. (a) Original fill algorithm (b) Colored Mattes (c) Final result by using Color Mattes

Completion from Right Side:
A similar procedure is used to start filling up the blocks along the
right boundary of the matte. For the block ‘Bb’, located next to the
right boundary of the matte, we locate ‘Bs’, the most similar block
by searching along the horizontal row in the right part of the
source image. Now we replace ‘Bbl’, the immediately left block of
‘Bb’, with ‘Bsl’, which is located immediate left of ‘Bs’. Again at
each stage of filling the other blocks inside the matte, care is taken
to ensure that replaced blocks match sidewise as well as with the
blocks on the top. This helps in maintaining the figural continuity
across the matte area. The method will result in uniformly filling
up the matte row under consideration from the left and the right
sides. However, it is quite likely that while blocks from left and
right side of the matte are filled in properly, there may be a
mismatch where the left and the right blocks meet at the centre of
the matte. It is because the source image on the left side of the
matte may not agree totally with the right side of the matte.

One possible solution to this problem would be a texture
interpolation for middle three or five blocks, or a random
displacement of the blocks by two or three pixels at the centre of
the matte.

Correction for Self-Replacement
We fill-up the unknown region of the matte with grid blocks from
the source image. In most of the images the removed foreground
portion is one single area with a convex shape. Considering a grid
row, the unknown region is continuous in such shapes. In some
images, the shape of the missing region could be concave. This
may cause a small part of the source image to be available
between two limbs of the concave region. Due to lack of sufficient
number of blocks along the horizontal row, the algorithm would
attempt to select some blocks from the matte area itself (self-
replacement). This may cause figural discontinuities in the
missing area along one or more rows.

272 Society for Imaging Science and Technology & Society for Information Display

(a) (b)

(c) (d)

Figure 3. Colored Matte

We apply the search procedure on the image we move along the
grid row, filling in the blocks in the matte as we proceed. When
we come across a row where there are such discontinuities, the
result of search for source blocks might recover some blocks that
are themselves unknown (low confidence). This means that the
block in the matte is being filled by another block in the matte
itself. As we proceed further, the error gets propagated along the
row. We use the following method to handle such images. During
the first pass, we keep track of the matte blocks that are incorrectly
filled by blocks with matte blocks. To keep track of such blocks,
we assign an error flag to the blocks that are incorrectly filled. The
error flagged blocks are assigned a new matte color (say bright red
color) as shown in Figure 1.

In the next pass, we create another matte with the flagged blocks
as the missing regions. Now, the input image to the second pass is
the output image of the first pass, containing the error blocks.
Using this matte and the first pass filled image, as input to the
algorithm we run the second pass of the algorithm. Since majority
of the original missing blocks are filled in the first pass, there are
not many missing regions in the second pass. This reduces the
chances of the pixels being filled by pixels with unknown values
again.

Tilted Orientations
Images of natural scenery containing mountains and similar slopes
do not have perfect horizontal orientation. The slope could be
quite appreciable. If the matte or a portion of the matte
encompasses part of such terrain, the above algorithm would

produce incorrect results, as it will try to fill in blocks from
adjacent horizontal rows. The scene would not have the naturally
pleasing look. In the middle of the missing region a line appears
separating two parts at different heights. For example, in case of a
mountain slope, blocks from the mountain area would fill one half
of the matte, while the other half would be filled by blocks from
the sky area. The slanting part of the mountain is lost in the
replaced part and an odd shaped region shows up.

To take care of this problem we propose a two colored matte
solution. The normal matte filled up from left and right side will
exhibit the problem shown in Figure 2(a). The matte is divided in
two parts along the slope in such a way that the two halves fall in
differently textured region (Figure 2 b). This could be done either
by the user, or by carrying out an examination of the blocks
around the central line and keep on rotating the line till the matte is
neatly divided in appropriate regions. Once this is done, it
becomes very easy to fill up the two matte areas. Each color
specifies the area from where it is to be filled, say, green colored
matte should be filled from blocks only from the right side, and
blue colored matte should be filled with blocks from left only
(Figure 2c). A suitable matte for Figure 3(a) is shown in Figure
3(c) while the final results are shown in Figure 3(d).

In some cases, the matte happens to very close to the edge of the
image. Since there is not enough information on both the sides of
the matte, filling from only one side is preferred. So to specify the
side from which the matte should be filled, colored matte can be
used.

13th Color Imaging Conference Final Program and Proceedings 273

Computational Requirements
In this work, we have presented a technique for image filling. We
have shown that even by using a restricted area of the source
image, the matte area can be filled with background texture. We
have made a comparison of computational requirement vis-à-vis
another approach5 used for image filling which is closest to our
approach. The authors in Ref. [5] fill the image matte by applying
extensive search over all positions and eight orientations in the
image. Also, it considers the texture frequency of the image to
decide the size of the fragment. Our algorithm is orders of
magnitude faster than Ref. [5]. Our search is limited to a very
small and restricted area in the image. The algorithm takes
advantage of the fact that all the natural images have horizontal
distribution of texture and color. Therefore the search is made over
a small region i.e. a horizontal strip next to the missing region.

Timing Estimates
Our method does not apply the computations over many levels;
also the search operation is only over a small region in the image

and not over different levels and orientations of the image as in
Ref. [5]. This considerably reduces the computation time of our
algorithm. The authors in their paper5 indicate that the computation
times range between 120 and 419 seconds for 192 by 128 images
and between 83 and 158 minutes for 384 by 256 images on a 2.4
GHz PC processor.5 In our case, the computation time for images
of 332 by 223 ranges from 10 seconds to 25 seconds depending on
the matte area, while there is little degradation in the quality of the
filled image as compared to Ref. [5].

Conclusions
A fast method has been proposed to complete images of natural
scenery from which a foreground object has been removed and a
matte created. The image is completed using appropriate regions
from the rest of the image. We have shown that the size of the
search areas of the known regions can be drastically reduced by
making use of strong horizontal orientation of the image. Figure 4
presents the application of this idea on number of images.

Figure 4. Results of Image completion

274 Society for Imaging Science and Technology & Society for Information Display

Computational comparison with another existing algorithm has
been presented to show that image completion can be carried out
quite fast.

References
1. Ashikhmin, M. Synthesizing natural textures. In ACM Symposium

on Interactive 3D Graphics, 217–226. (2001)
2. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. Image

inpainting. In Proceedings of ACM SIGGRAPH 2000, ACM Press,
417–424. (2000)

3. Bertalmio, M., Vese, L., Sapiro, G., and Osher, S. Simultaneous
structure and texture image inpainting. In IEEE Conference on
Computer Vision and Pattern Recognition, to appear. (2003)

4. Brooks, S., and Dodgson, N. Self-similarity based texture editing.
ACM Transactions on Graphics, 21, 3, 653–656. (2002)

5. Drori, I., Cohen-Or, D., Yeshurun, H. Fragment Based Image
Completion. In Proceedings of ACM SIGGRAPH 2003, ACM Press.
(2003)

6. Efros, A., and Leung, T. Texture synthesis by non-parametric
sampling. In IEEE International Conference on Computer Vision,
1033–1038. (1999)

7. www.freefoto.com – FreeFoto.com is a collection of free photographs
for private non-commercial use on the Internet.

8. Freeman, W. T., Jones, T. R., and Pasztor, E. Example-based super-
resolution. IEEE Computer Graphics and Applications, 56–65. (2002)

9. Heeger, D. J., and Bergen, J. R. Pyramid-based texture
analysis/synthesis. In Proceedings of ACM SIGGRAPH 95, ACM
Press, 229–238. (1995)

10. Igehy, H., and Pereira, L. Image replacement through texture
synthesis. In IEEE International conference on Image Processing, vol.
3, 186–189. (1997)

11. www.mountainlake.com
12. Wei, L. Y., and Levoy, M. Fast texture synthesis using tree structured

vector quantization. In Proceedings of ACM SIGGRAPH 2000,
ACM Press, 479–488. (2000)

13. Welsh, T., Ashikhmin, M., and Mueller, K. Transferring color to
greyscale images. ACM Transactions on Graphics, 21, 3, 277–280.
(2002)

Author Biographies
K.K. Biswas is a Professor of Computer Science & Engg. at Indian
Institute of Technology, New Delhi, India. His interests are in the area of
high dynamic range image rendering and video indexing. He is currently
a visiting faculty in the School of Computer Science of University of
Central Florida .

Siddharth Borikar completed his MS in Computer Science from the
University of Central Florida (2004) and is now working as a Software
Consultant.

Sumanta Pattanaik is an Associate Professor of Computer Science in the
University of Central Florida. His main area of research is realistic
rendering. He is the Computer Graphics Category Editor of ACM
Computing Reviews.

13th Color Imaging Conference Final Program and Proceedings 275

