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Abstract 
We present a fast method for completion of digital photographs of 
natural scenery, where the removal of an unwanted object creates 
a hole in the image. Because of the strong horizontal orientation 
in natural scenes, it is intuitive to synthesize the missing part by 
image fragments drawn from horizontally located areas, without 
the need to search whole of the image area to find the appropriate 
texture. We are thus able to select the texture that naturally blends 
into the rest of the scene horizontally. We also propose a 
modification to deal with sloping horizons, such as mountain 
areas, and show how the texture filling areas can be suitably 
chosen. We demonstrate the method by completion of a variety of 
scenes. 

Introduction  
The filling of missing information is a very important topic in 
image processing, with applications including image coding and 
wireless image transmission(e.g. recovering lost blocks), special 
effects (e.g. removal of objects), and image restoration (e.g. 
scratch removal).3 The removal of portions of an image is an 
important tool in photo-editing and film post-production.   

Image completion is an area related to texture synthesis. Inpainting 
techniques were naturally extended from paintings to images and 
films.2 Image inpainting and image completion are not the same; 
they differ in the area that is to be filled or completed. In image 
completion regions are large and consist of textures, large scale 
structures and smooth areas. In image completion the region that is 
to be removed is specified by the user. It is generally some 
foreground element that needs to be taken off the scene. After 
removing the foreground element, the area is to be filled so that 
the image looks naturally complete.5  

Various methods like clone brush strokes and compositing 
processes are used to complete the image, user skill is required in 
such methods. Texture synthesis can also be used to complete 
regions where the texture is stationary or structured. 
Reconstructing methods can be used to fill in large-scale missing 
regions by interpolation. Inpainting is suitable for relatively small, 
smooth and non-textured regions. In Computer Vision number of 
approaches related to image completion are available, dealing with 
edge and contour completion.    

Our approach focuses on image based completion, with no 
knowledge of the underlying scene. In images with natural 
scenery, there is a strong horizontal orientation of texture/color 
distribution. We have tried to exploit this fact in our proposed 
algorithm to fill in missing regions. We follow the principle of 
figural familiarity and use the image as our training set and 

complete the image based on examples from horizontal 
neighborhood.  

The assumption of horizontal orientation in natural images can be 
verified by taking the Fourier transform of such images. Fourier 
transforms of such images exhibit a distinct vertical line at the 
center. This indicates that the color/texture in the image is 
horizontally oriented. 

The organization of the paper is as follows. In section 2, we briefly 
discuss some of the related work. In section 3 we present our 
algorithm on image completion. In section 4, we make a 
comparison of computational requirements of our algorithm with 
that of Ref. [5]. 

Related Work 
Image inpainting is a method for repairing damaged pictures or 
removing unnecessary elements from pictures. Inpainting has its 
applications in restoration of damaged paintings and photographs 
and also could be applied in image filling problems. The objective 
of inpainting is to reconstitute the missing or damaged portions of 
the work, in order to make it more legible and to restore its unity. 
An algorithm related to the basic techniques used by professional 
restorators in image restoration is used in Ref. [2]. The basic idea 
is to smoothly propagate information from the surrounding areas in 
the isophotes (lines of equal gray values) direction. The user has to 
provide the region to be inpainted.  

Brooks et al.4 have presented a mechanism to edit textures. It 
allows the user to perform replicated texture editing operations. A 
single editing operation at a given location would cause global 
changes, affecting all similar areas of the texture. The algorithm 
changes (edits or warps) the texture as defined by the user. The 
pixel values are changed as per the user input and the result is an 
automatically generated texture with limited user input. 

Freeman et al.8 have discussed a method to increase the resolution 
of images. Constructing polygon models for complex, real-world 
objects is difficult. Image based rendering (IBR), a complementary 
approach for representing and rendering objects, uses cameras to 
obtain rich models directly from real-world data. When the image 
is enlarged, since the original information captured is less, one 
gets a blurry result. 

Heeger et al.9 have described a method for synthesizing images 
that match the texture appearance of a given digitized sample.  The 
focus of their paper is on the synthesis of stochastic textures. Some 
theories of texture discrimination are based on the fact that two 
textures are often difficult to discriminate when they produce a 
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similar distribution of responses for set of (orientation and spatial-
frequency selective) linear filters.  

The work done by Igehy et al.10 is another approach for image 
filling which uses the texture synthesis algorithm described in the 
paper by Heeger et al.9 In the algorithm the noise is converted to 
an image using the original image and a synthetic texture which is 
derived from the target. The algorithm is completely based on Ref. 
[9], except that with every iteration of the algorithm, the original is 
composited back into the noise image according to the mask using 
a multi-resolution compositing technique that avoids blurring and 
aliasing.   

Efros et al.6 have modeled the texture as a Markov Random Field 
(MRF).  The probability distribution of brightness values for a 
pixel given the brightness values of its spatial neighborhood is 
independent of the rest of the image. Based on this principle the 
neighborhood of the pixel is considered.  

The major challenges in texture synthesis as posed in the paper by 
Wei et al.12 are-1) modeling- how to estimate the stochastic 
process from a given finite texture sample and 2) sampling- how to 
develop an efficient sampling procedure to produce new textures 
from a given model. They claim that both the modeling and 
sampling parts are essential for good texture synthesis because the 
plausibility of generated textures will depend primarily on the 
accuracy of the modeling, while the efficiency of the sampling 
procedure will directly determine the computational cost of texture 
generation.  

The algorithm described in Ref. [1] is similar to the one by Wei et 
al. in which the searching operation is used. The algorithm by Wei 
et al. uses the L2 norm to calculate the distances between two 
neighborhoods. Since the L2 norm is averaging of neighborhood 
pixels the edges, corners and other high level features in the image 
are not captured. This could lead to smoothed out edges and the 
human visual system being very sensitive to such details, these 
anomalies are easily recognized. 

Bertalmio et al.3 have tackled the problem of image filling. Since 
most image areas are not pure texture or pure structure, this 
approach provides just a first attempt in the direction of 
simultaneous texture and structure filling-in. The basic idea of the 
algorithm in Ref. [3] is that the original image is first decomposed 
into two images, one capturing the basic image structure and the 
other capturing the texture (and random noise). The first image is 
inpainted following Ref. [2], while the second one is filled-in with 
a texture synthesis algorithm.6 The two reconstructed images are 
then added back together to obtain the reconstruction of the 
original data. 

The work done by Drori et al.5 comes closest to the work reported 
in this paper. In that paper5 the missing regions are iteratively 
filled using the known image as the training set. The goal is to 
complete the unknown regions in an image based on the known 
regions, given the inverse matte and the source image. Self-
similarity in the input image is required for this algorithm to give 
correct results. The algorithm requires extensive computation for 

every fragment at every scale. It takes a lot of time to complete a 
small portion of the image. In the next section, we present our 
approach to this problem which attempts to solve it in much less 
time. 

The Proposed Image Completion Method 
Our image completion follows the principle of figural familiarity. 
The missing areas are filled with familiar details taken by example 
from rest of the image as in Ref. [5]. However, as observed in 
most images of natural scenes there is a strong horizontal 
orientation of texture/color distribution. This prompts us to limit 
the search only along horizontal direction and thereby reduce the 
search complexity extensively.  

To capture properly the intended texture area, we propose to 
complete the unknown part with blocks of pixels instead of 
individual pixels. This will help to capture the appropriate texture 
content. We place a grid over the complete image with each cell of 
size m x m. The search is now made to find the appropriate block 
from the source image to fill up the m x m block of the matte. The 
algorithm is detailed below. 

Grid Algorithm 
For the given matte (the hole created by removing the foreground 
object), Drori et al. conduct the search for the appropriate pixel  by 
looking for  a match between the fragment surrounding the current 
pixel in the matte  and fragments in rest of the remaining source 
image. However, to have a seamless joint across the border of the 
matte, it would be more appropriate to locate the pixel pa most 
similar to the pixel lying on the left boundary of the matte, and 
replace the pixel on its right by the pixel on the right of pa. In our 
method, we consider m x m sized fragments (block). We propose 
to consider m x m blocks for searching and replacement. For this 
purpose we put a grid on the whole image with grid size of m x m 
(Figure 1). To maintain figural similarity, we start filling up the 
left portion of the matte with image fragments from the left side of 
the matte, and the right portion of the matte with fragments from 
portion of the image lying to right of the matte.  

Completion from Left Side: 
On each horizontal row we pick up ‘Bb’, the m x m block lying 
closest to the left of the matte boundary. We now search the 
source image for ‘Bs’, a block whose characteristics match closely 
with that of ‘Bb’, the measure of closeness being the L2 norm. 
Then we simply replace ‘Bbr’, the block on the immediate right of 
‘Bb’, by Bsr, the block to the immediate right of ‘Bs’. The 
underlying idea is that it will capture the figural familiarity 
between ‘Bs’ and ‘Bsr’ and ensure that it is reflected across the 
blocks ‘Bb’ and ‘Bbr’ as well. When the next horizontal row of 
blocks is considered, we again find the block nearest to the 
boundary and find the closest match as before. The replacement 
block now could be the one right of this block or the block located 
immediately below ‘Bsr’. It is observed that in many cases they 
turn out to be the same blocks. If it is not so we can make a 
selection based on how closely it fits in with other replaced blocks 
in the matte and the blocks near the boundary of the matte and 
replace it with the block that matches the best between the two 
blocks. 
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Figure 1. The m x m sized grid and the Block replacement policy. 

    
(a)       (b)       (c) 

Figure 2. Two Colored Matte. (a) Original fill algorithm (b) Colored Mattes (c) Final result by using Color Mattes 

 
Completion from Right Side:  
A similar procedure is used to start filling up the blocks along the 
right boundary of the matte. For the block ‘Bb’, located next to the 
right boundary of the matte, we locate ‘Bs’, the most similar block  
by searching along the horizontal row in the right part of the 
source image. Now we replace ‘Bbl’, the immediately left block of 
‘Bb’, with ‘Bsl’, which is located immediate left of ‘Bs’. Again at 
each stage of filling the other blocks inside the matte, care is taken 
to ensure that replaced blocks match sidewise as well as with the 
blocks on the top. This helps in maintaining the figural continuity 
across the matte area. The method will result in uniformly filling 
up the matte row under consideration from the left and the right 
sides. However, it is quite likely that while blocks from left and 
right side of the matte are filled in properly, there may be a 
mismatch where the left and the right blocks meet at the centre of 
the matte. It is because the source image on the left side of the 
matte may not agree totally with the right side of the matte. 

One possible solution to this problem would be a texture 
interpolation for middle three or five blocks, or a random 
displacement of the blocks by two or three pixels at the centre of 
the matte.  

Correction for Self-Replacement 
We fill-up the unknown region of the matte with grid blocks from 
the source image. In most of the images the removed foreground 
portion is one single area with a convex shape. Considering a grid 
row, the unknown region is continuous in such shapes. In some 
images, the shape of the missing region could be concave. This 
may cause a small part of the source image to be available 
between two limbs of the concave region. Due to lack of sufficient 
number of blocks along the horizontal row, the algorithm would 
attempt to select some blocks from the matte area itself (self-
replacement).  This may cause figural discontinuities in the 
missing area along one or more rows.  
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Figure 3. Colored Matte 

We apply the search procedure on the image we move along the 
grid row, filling in the blocks in the matte as we proceed. When 
we come across a row where there are such discontinuities, the 
result of search for source blocks might recover some blocks that 
are themselves unknown (low confidence). This means that the 
block in the matte is being filled by another block in the matte 
itself. As we proceed further, the error gets propagated along the 
row. We use the following method to handle such images. During 
the first pass, we keep track of the matte blocks that are incorrectly 
filled by blocks with matte blocks. To keep track of such blocks, 
we assign an error flag to the blocks that are incorrectly filled. The 
error flagged blocks are assigned a new matte color (say bright red 
color) as shown in Figure 1. 

In the next pass, we create another matte with the flagged blocks 
as the missing regions. Now, the input image to the second pass is 
the output image of the first pass, containing the error blocks. 
Using this matte and the first pass filled image, as input to the 
algorithm we run the second pass of the algorithm. Since majority 
of the original missing blocks are filled in the first pass, there are 
not many missing regions in the second pass. This reduces the 
chances of the pixels being filled by pixels with unknown values 
again. 

Tilted Orientations 
Images of natural scenery containing mountains and similar slopes 
do not have perfect horizontal orientation. The slope could be 
quite appreciable. If the matte or a portion of the matte 
encompasses part of such terrain, the above algorithm would 

produce incorrect results, as it will try to fill in blocks from 
adjacent horizontal rows. The scene would not have the naturally 
pleasing look. In the middle of the missing region a line appears 
separating two parts at different heights. For example, in case of a 
mountain slope, blocks from the mountain area would fill one half 
of the matte, while the other half would be filled by blocks from 
the sky area. The slanting part of the mountain is lost in the 
replaced part and an odd shaped region shows up.  

To take care of this problem we propose a two colored matte 
solution. The normal matte filled up from left and right side will 
exhibit the problem shown in Figure 2(a). The matte is divided in 
two parts along the slope in such a way that the two halves fall in 
differently textured region (Figure 2 b). This could be done either 
by the user, or by carrying out an examination of the blocks 
around the central line and keep on rotating the line till the matte is 
neatly divided in appropriate regions. Once this is done, it 
becomes very easy to fill up the two matte areas.  Each color 
specifies the area from where it is to be filled, say, green colored 
matte should be filled from blocks only from the right side, and 
blue colored matte should be filled with blocks from left only 
(Figure 2c).  A suitable matte for Figure 3(a) is shown in Figure 
3(c) while the final results are shown in Figure 3(d). 

In some cases, the matte happens to very close to the edge of the 
image. Since there is not enough information on both the sides of 
the matte, filling from only one side is preferred. So to specify the 
side from which the matte should be filled, colored matte can be 
used. 
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Computational Requirements 
In this work, we have presented a technique for image filling. We 
have shown that even by using a restricted area of the source 
image, the matte area can be filled with background texture. We 
have made a comparison of computational requirement vis-à-vis 
another approach5 used for image filling which is closest to our 
approach. The authors in Ref. [5] fill the image matte by applying 
extensive search over all positions and eight orientations in the 
image. Also, it considers the texture frequency of the image to 
decide the size of the fragment. Our algorithm is orders of 
magnitude faster than Ref. [5]. Our search is limited to a very 
small and restricted area in the image. The algorithm takes 
advantage of the fact that all the natural images have horizontal 
distribution of texture and color. Therefore the search is made over 
a small region i.e. a horizontal strip next to the missing region.  

Timing Estimates 
Our method does not apply the computations over many levels; 
also the search operation is only over a small region in the image 

and not over different levels and orientations of the image as in 
Ref. [5]. This considerably reduces the computation time of our 
algorithm. The authors in their paper5 indicate that the computation 
times range between 120 and 419 seconds for 192 by 128 images 
and between 83 and 158 minutes for 384 by 256 images on a 2.4 
GHz PC processor.5 In our case, the computation time for images 
of 332 by 223 ranges from 10 seconds to 25 seconds depending on 
the matte area, while there is little degradation in the quality of the 
filled image as compared to Ref. [5]. 

Conclusions 
A fast method has been proposed to complete images of natural 
scenery from which a foreground object has been removed and a 
matte created. The image is completed using appropriate regions 
from the rest of the image. We have shown that the size of the 
search areas of the known regions can be drastically reduced by 
making use of strong horizontal orientation of the image. Figure 4 
presents the application of this idea on number of images. 

 

  
 

  
 
 

           
 
Figure 4. Results of Image completion 
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Computational comparison with another existing algorithm has 
been presented to show that image completion can be carried out 
quite fast. 
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