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Abstract 
We propose estimating the gamma value for the blue channel of a 
softcopy display via a grey-balancing task. A “near-neutral” 
patch is displayed along with a neutral reference pattern made 
from black and white pixels. The red and green values for this 
near-neutral patch are derived from a separate calibration of 
these 2 channels. The user then adjusts the blue value until the 
near-neutral patch appears neutral with respect to the 
surrounding reference. Gamma for the blue channel is estimated 
from the selected value. Implementations include interactive 
adjustment with mouse and/or keyboard, or selecting from a fixed 
set of patches the one that appears most neutral. When compared 
with the standard technique, inter- and intra-observer variation in 
the settings for blue were substantially reduced. 

Introduction 
Soft proofing continues to gain importance especially in the graphic 
arts and production colour markets. We expect it to play an 
increasingly important role in distributed and remote colour 
management applications. To be useful, soft-proofing depends on a 
calibrated display. At the high end in the graphic arts market, users 
are willing to calibrate their displays using expensive colour 
measurement instruments. Further down market, users may use 
interactive visual calibration software which they may buy (from 
e.g. Adobe or Monaco Systems) or discover on a Macintosh system 
(on which it comes bundled). While visual techniques are less 
accurate than their measurement-based counterparts; they are 
relatively inexpensive, with sufficient quality for many applications. 

An important colour characteristic of display devices is the 1-
dimensional tone response of each of the R, G and B primaries. For 
CRTs and many LCDs, this tone response is described by a power-
law relationship between input digital value and displayed 
luminance.1 One simplified form of the power-law function is given 
as follows: 
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where D is the input digital count, Y is the fractional displayed 
luminance, D0 is the black offset value below which there is no 
discernable luminance, D

max
 is the maximum digital input value, K is 

the gain, and γ is the exponent often referred to as “gamma”. The 
tone response in Eqn (1) must be derived individually for each of R, 
G, B, thus resulting in potentially different values for K and gamma 
for the 3 channels.  

As indicated earlier, the most accurate method of calibrating the 
tone response is to take radiometric measurements corresponding to 
multiple digital input values along the tonescale, and deriving the 
function parameters via some form of regression, data fitting or 
interpolation.1 A simpler and less costly approach is to use visual 
tasks (i.e. no instrumentation) to estimate the tone response. The 
focus of this paper is on estimating gamma using purely visual 
tasks. In the following formulation, it is assumed that K=1, D

max
 = 

255 (i.e. an 8 bit system), and the offset D0 is obtained from a 
separate preceding visual task.* 

Several techniques have been proposed for visually estimating 
gamma for displays.2-6 Perhaps the most well-known approach is 
shown in Fig. 1. The task involves using the slider to adjust the 
digital value of the continuous-tone patch on the right until its 
luminance matches the average luminance of the halftone pattern on 
the left, generated using alternating on/off lines.  
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Figure 1. Gamma determination by 50% luminance matching. 

The task can be executed on a greyscale R=G=B stimulus (as 
shown in Fig. 1), in which case it is assumed that the same gamma 
applies for all three channels. Alternatively, the task can be carried 
out separately for R, G, and B to derive potentially different gamma 
values for the 3 channels. The assumption is that the fractional 
luminance YHT of the halftone pattern is 50%, i.e. it is halfway 
between the luminances at full-off and full-on. The value of gamma 
is estimated from the digital value needed to match the 50% 
fractional luminance as follows: 
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where Dselect is the digital value selected in the visual luminance 
matching task.  
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The technique just described is in use within many commercially 
available display calibration tools, and, to the authors’ knowledge, 
was first described by Cowan2. 

Visual tasks that assume the same gamma for the three channels 
use greyscale (R=G=B) images or patches, and are generally simple 
to execute. However, the equi-gamma assumption is often 
incorrect. The Photoshop 3.0 calibration tool attempts to correct for 
this assumption by having the users perform a grey-balance 
adjustment jointly with the 50% greyscale luminance matching task. 
This is an iterative procedure that could produce inconsistent 
results from observer to observer. Apple’s display calibration tool 
provides similar functionality. 

Since the power-law response is a channel-wise phenomenon, it 
makes more sense to estimate gamma separately for each of the 
three channels. The problem is that luminance judgments are very 
difficult to perform for the blue primary. Vision scientists (e.g. 
Wandell7, p. 328) believe that the blue (short-wavelength) sensor 
response contributes little if any to the human visual system’s 
luminance channel. The medium- and long-wavelength sensors also 
respond, but to a much lesser extent, to light generated by the blue 
phosphor of a CRT. Hence relatively large changes to the strength 
of the blue signal yield small changes in the visual (luminance) 
response. The resulting difficulties in the visual task produce large 
variances in the estimated gamma value for blue.  

Perhaps more important is the finding that the short wavelength 
sensor response is not used in edge detection8. In the typical setup 
(as in Fig. 1), the user attempts to reduce the strength of the edge 
between the two halves of the field. It is easy to bring the edge 
strength down to threshold, as the long and medium sensors are 
scarcely stimulated by a field containing only pure blue and black. 

On the other hand, we do use our short-wavelength cones for hue 
discrimination. As evidenced by the data that supports the various 
colour difference metrics such as ∆E94, ∆ECMC, and 
CIEDE20009, short-wavelength cone contributions to colour 
differences are roughly the same as those of the other cones, at 
least in the neighbourhood of the neutral axis. This suggests that a 
grey-balancing task does not result in a disadvantage in the gamma 
estimate for blue relative to the other primaries. It does not say 
whether grey balancing is more or less sensitive than luminance 
matching. However, experience has shown that grey balance is an 
important indicator of perceived image quality, or the presence or 
absence of a colour cast. One might expect that the limits to our 
ability to adjust grey balance would be no worse than our limits in 
noticing colour casts in images. 

Grey-Balance for Calibrating the Blue Channel 
We propose a visual method of determining the gamma for the blue 
primary that is more consistent than the luminance matching task. It 
is based on the insight that accurate gamma estimation for blue is 
important not for luminance reproduction, but for proper colour-
balance, most importantly grey-balance. Thus it makes sense to use 
grey-balancing, rather than luminance matching, as the criterion for 
selecting the blue gamma value. Our notion of neutral is somewhat 

affected by the white point of our adapting environment, so 
providing a reference white is helpful. 

The idea then is to design a visual task to find a patch best 
representing neutral, given calibrated digital values for the red and 
green primaries that produce 50% fractional luminance. (The latter 
are obtained from any standard approach, e.g. the task shown in 
Fig. 1.) A large patch is displayed within a larger surround, which 
contains white and preferably a checkerboard or line pattern, to 
establish a reference for the neutral axis. This is shown in Fig. 2. 
The user adjusts a slider, causing only the digital input to the blue 
channel to change, while the red and green inputs are fixed at the 
calibrated 50% luminance level. This changes the hue of the patch 
in the middle, moving it along a line from yellowish to bluish. The 
user selects the value at which the patch appears most nearly 
neutral with respect to the surround. Effectively the task is to match 
the chromaticity of the patch with that of the halftone pattern 
(which by definition is the same as that of the display white). We 
then use the selected value to estimate gamma for the blue primary 
using Eqn (2).  

Note that the proposed method of grey-balancing relies upon the 
so-called “chromaticity constancy” assumption which states that 
different levels of a pure primary produce the same x-y 
chromaticity coordinates. This assumption is usually valid for CRT 
displays, but is violated in some LCDs10 (especially the low-cost 
versions found in laptop computers.) When the assumption is 
violated, the estimate of gamma obtained by single-primary 
luminance matching can be significantly different from that 
obtained by grey-balancing (the difference being systematic, and 
larger than inter-observer variations). In the next section we will 
discuss the implications of this. 

V aries 
in hue 

 
Figure 2. Blue gamma determination via grey-balancing. The user adjusts the 
slider until the patch in the middle appears neutral “grey” with respect to the 
surround. 

Experimental Results 
CRT Experiment 
The proposed visual calibration technique was implemented as a 
Java applet and tested on a Gateway CRT display. In a separate 
visual experiment, it was determined that D0=5. Five observers 
were then first asked to perform the 50% luminance matching task 
shown in Fig. 1 separately for each of the R, G, B channels. All but 
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one observer performed the task twice, providing a total of 9 
observations. Gamma estimates for R, G and B were then 
calculated using Eqn (2).  

Each observer was then asked to perform the grey-balance task 
shown in Fig. 2 to determine a second gamma estimate for the blue 
channel. The R and G values were taken from the previous task. 
Eqn (2) was again used, where this time D

select
 is the blue digital 

value that produces the best grey-balance match with the surround.  

In Table 1, statistics are compared for the nine gamma estimates for 
the blue channel from the luminance matching vs. grey-balancing 
tasks. The precision used in this implementation resulted in a 
quantization step of 0.04 for gamma values. 

Table 1: Statistics for Blue Gamma Estimates from Standard 
Luminance Matching vs Proposed Grey-balancing 

 Mean Std. 
Dev s 

Min Max Max 
single-

observer 
range 

Luminance 
matching 

2.24 0.138 2.07 2.51 2.17-2.51 

Grey-
balancing 

2.26 0.027 2.25 2.33 2.25-2.29 

 

The results show that the average gamma estimates from the two 
approaches are the same (i.e. within quantization precision). The 
standard error of the mean is �/√N, where N is the number of 
observations. In this experiment, the standard errors were .046 and 
.009 for the luminance matching and grey-balance tasks 
respectively. This indicates that the grey-balance approach estimate 
(i.e the average of the observers’ grey-balance-based estimates) lies 
within the standard error of the luminance matching approach 
(2.194-2.286), while the mean of the luminance matching is nearly 
within two standard errors of the mean of the grey balancing 
approach (2.242-2.278). However the proposed grey-balancing task 
produces substantially less variance than the standard luminance 
matching task. This is true both across observers, and across 
repetitions of the task by a single observer. Based on these 
(admittedly small) statistics, an Excel simulation indicated that an 
individual using the grey balancing approach would select a value 
within the range 2.189-2.333 95% of the time, whereas using the 
luminance matching approach, they would be outside this range 
over 70% of the time. An F test on the two variances indicates 
statistical significance at the 99.99% confidence level. 

While it is instructive to examine the consistency of the gamma 
estimates, what is of ultimate interest is the image quality from the 
resulting correction. That is, we would like to see how variances in 
gamma estimates translate to differences in colour reproduction of 
images. To this end, two calibrated RGB images were gamma-
corrected using the gamma estimates from Table 1. The gamma for 
R and G were chosen from a single observer’s response to be 2.21 
and 2.17 respectively. To examine the worst-case scenario, the B 
channel was corrected with the minimum and maximum gamma 
values for the luminance matching task (from Table 1 these are 2.07 

and 2.51). Prints were made of images corrected using each of the 
two methods. To generate these prints, the gamma-corrected image 
was assumed to be in sRGB space (equivalently, the Gateway 
display was assumed to be an sRGB display). This image was 
mapped to CMYK using the printer characterization transform for a 
Xerox DocuColor12, and then printed to this device. 

We observed significant differences between the two corrected 
images, indicating that variations in the gamma estimate for the B 
channel can indeed have a strong effect on the final reproduction. 
The same procedure was repeated for the grey-balancing task. The 
differences between the two extreme cases were very difficult to 
find. This shows that the consistency of the blue gamma estimate 
considerably affects the consistency of the resulting colour 
reproduction, and that the proposed approach produces far more 
consistent images than the standard approach. 

An equivalent quantitative experiment was also performed. An 
8×8×8 uniformly sampled RGB grid was generated. These RGB 
values are to be interpreted as raw device values driving the CRT. 
The R and G channels were raised to powers of 2.21 and 2.17 
respectively. The B channel was raised to the minimum gamma 
value of 2.07 obtained from the luminance matching experiment. 
The result is a set of RGB values linearized in luminance according 
to the visual gamma estimates. These RGB values were converted 
to XYZ and then to CIELAB, assuming sRGB primaries and white 
point. A second set of CIELAB data was obtained using the same 
procedure, but assuming the maximum gamma of 2.51 from the 
luminance matching experiment. CIE ∆E differences were 
computed between the two data sets, and are shown in Table 2. 
Clearly the variations in observers’ response to the visual task 
produce some significant ∆E errors. While one could analytically 
compute the maximum ∆E induced by a given change in blue 
gamma (differentiating L*a*b* wrt gamma), we believe this 
exercise to be at least as instructive. 

The same calculation was performed using the minimum and 
maximum blue gamma estimates from the grey balancing approach. 
These are also included in Table 2. Clearly, the grey balancing 
approach results in far less intra- and inter-observer variation, thus 
offering a more consistent and robust approach to gamma 
estimation for the blue channel. 

Table 2: Observer Variations from the Luminance Matching vs. 
Grey Balance Approach, Measured in CIE 1976 ∆E Units. 

CIELAB ∆E  
Average 95th Percentile Maximum 

Luminance 
Matching 

5.41 11.2 15.2 

Grey 
Balancing 

0.98 2.03 2.80 

 

All of the above analysis was based on data collected from five 
observers, all colleagues of the first two authors. Because the 
difference in variances was so large, we were convinced of the 
effect. In order to validate the results with a larger set of observers, 
the third author repeated the experiment, slightly modified, with 25 
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observers. The experiment differed only in the following respects: a 
different monitor was used under different (but consistent) lighting 
conditions, and the experimenter set the values for red and green to 
a predetermined value to improve consistency and reduce observer 
time. The pool of observers was primarily teenagers in the local 
home-schooling community and their parents. Twelve observers 
were female and thirteen were male. Table 3 summarizes the 
results. 

Table 3: Results on 25 Observers (50 Observations) 
 Average Standard 

deviation 
Luminance Matching 1.635 0.184 
Grey Balancing 1.623 0.129 

 

The difference in the standard deviations is substantially less 
striking, however an F test on the variances (whose ratio is 2.05) 
indicates that the difference is significant at the 99% confidence 
level.  

LCD Experiment 
Recall the earlier concern about the efficacy of the method in the 
case where chromaticity-constancy fails. To address this concern, 
the same visual tasks were performed on a laptop LCD found to 
violate chromaticity-constancy. The corrected electronic images 
obtained from both the luminance matching and the grey-balancing 
tasks were compared with calibrated prints viewed in a light booth. 
The general observations are: 

• Consistency in observer responses in the grey-balance task is 
again superior to that in the luminance matching task 

• The biggest differences in the images are seen near the neutral 
axis. The grey-balancing approach corrects input pixels with 
approximately equal R, G, B values to render with a 
chromaticity near that of the display white point. This is not 
the case with the luminance matching approach. 

• In terms of overall quality, it was found that the grey-balance 
approach produces a closer match to the print than the 
luminance-matching approach in a few image regions. In no 
cases did the grey-balance approach produce a worse result.  

 
Thus the proposed approach offers not only a significant advantage 
in consistency of results, but also a potential advantage in image 
quality for displays that do not conform to the chromaticity 
constancy assumption built into the standard CRT model. 

Discussion 
In addition to the basic approach described earlier, one can 
envision the following extensions and variants: 

• Currently only the blue value is adjusted until a chromaticity 
match with the surrounding pattern is achieved. If this does not 
suffice (as might be the case for low cost LCDs), an additional 
control on e.g. the red channel may be necessary to achieve a 
satisfactory chromaticity match. This would then be used to 
estimate the gamma for both the blue and red channels. 

• Especially for displays that violate chromaticity constancy, 
multiple levels could be matched. That is, in addition to 
matching the grey at 50%, lines combining that 50% grey with 
100% white or black could be matched to grey patches in a 
subsequent step. This would provide values for a multi-
parameter model, rather than the single-parameter gamma 
model. 

• In addition to matching the chromaticity of the patch with that 
of the neutral surround, another control could be added to 
achieve a luminance match between the two stimuli. This 
could be implemented within the same or a separate panel. 

• Instead of a slider-based adjustment, the user could select 
from a fixed set of patches the one closest to neutral (see Fig. 
3). The patches would span the possible range of gamma 
values. 

 

 

 
Figure 3. Possible display selection approach. The user selects the patch that 
appears most neutral with respect to the surround. 

• A variant of the above approach is to select from a small set of 
patches the one closest to grey, and then a new set is 
presented with the selected patch at its centre, and a narrower 
range surrounding it. This is repeated until the desired level of 
precision is reached. For example, assuming monitors have 
gammas in the range 1.0 to 2.5, the first set might be produced 
with gamma values of 1.375, 1.75, 2.125. If the user selects 
2.125, the next set would be 1.9375, 2.125, 2.3125. On each 
step, the set would represent a narrower range of gammas, 
until the desired precision is reached. The assumption in this 
approach is that if the user selects a given patch from a set of 
three equally spaced patches, then the “true” value is between 
the value for that patch plus half a space and the value minus 
half a space. This assumption can be relaxed by making the 
sets shrink more slowly. 

 
Conclusions 
It is relatively easy to obtain a visually based estimate for gamma 
for red and green using the typical approach of comparing an on-off 
halftone pattern to a mid-level continuous-tone patch. However, 
estimates of gamma for blue obtained in this way tend to have very 
poor precision. This is to be expected given the limited contribution 
of the blue channel to luminance judgments in the human observers. 
Human observers are very good at detecting small deviations in 
chromaticity from neutral, assuming a good neutral reference is 
available. By replacing a luminance-based judgment with a 
hue/chromaticity judgment we achieved a substantial increase in 
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precision of visual estimates of gamma. This not only improves the 
precision of the value of a display calibration parameter; it also 
produces a significant improvement in the judged appearance of 
images displayed on a device calibrated using the visual approach. 
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